
Simplified Logical Relation for FIP and Perceus

ANTON LORENZEN, University of Edinburgh, UK

1 PURE SEMANTICS
We define the syntax in Figure 1. To illustrate the key ideas, we use a simplified language where

only lambdas are available.

Expressions:

e ::= v (values) v ::= x, y (variables)

| e v (application) | 𝜆x . e (lambda)

| let x = e in e (let binding)

| inc v; e (rc increment)

| dec v; e (rc decrement)

Fig. 1. Syntax of the 𝜆FIP calculus.

The pure big-step semantics of the FIP calculus is given in Figure 2:

e1 ⇓ v e2 [x:=v] ⇓ w

let x = e1 in e2 ⇓ w
let

e ⇓ w

inc v; e ⇓ w
inc

e ⇓ (𝜆x . e′) e′[x:=v] ⇓ w

e v ⇓ w
app

e ⇓ w

dec v; e ⇓ w
dec

Fig. 2. Functional big-step semantics.

2 TYPING RULES
We present the rules of the simplified Perceus type system in Figure 3. We write Γ ⊢ e to say that the
expression e consumes exactly the variables in Γ. All rules of the calculus are substructural, where
we allow exchange but disallow contraction and weakening. However, contraction can be achieved

by inserting a reference count increment and weakening using a reference count decrement. We

now keep track of the free variables of lambdas in the syntax, moving from 𝜆x . e to 𝜆zx . e, where z
are the free variables of 𝜆x . e.

3 HEAP SEMANTICS
We can prove the reference counting scheme sound using the heap semantics in Figure 4. It differs

from the pure semantics in the use of a heapHwhich stores all bindings with their reference counts.

Furthermore, the final output of this semantics is a variable x, which, when read from the heap

[H]x gives the final result v of the program.

We write [H]x for the value v obtained by recursively reading the variable x from the heap H.
Our soundness result states that if a program evaluates to a value v in the pure semantics, then it

also evaluates to the same value [H]x in the heap semantics:

Corollary 1.
If e ⇓ v and ∅ ⊢ e, then ∅ | e ↦−→∗

h H | x and [H]x = v.

1

Γ ::= ∅ | Γ, x (owned environment)

x ⊢ x
var

z, x ⊢ e z = fv(𝜆x . e)
z ⊢ 𝜆z x . e

lam

Γ, x, x ⊢ e

Γ, x ⊢ inc x; e
inc

Γ1 ⊢ e1 Γ2, x ⊢ e2 x ̸∈ Γ2

Γ1, Γ2 ⊢ let x = e1 in e2
let

Γ1 ⊢ e Γ2 ⊢ v

Γ1, Γ2 ⊢ e v
app

Γ ⊢ e

Γ, x ⊢ dec x; e
dec

Fig. 3. Simplified 𝜆FIP calculus

H : := ∅ | H, x ↦→n𝜆zx ′. e
E : := □ | x V | E v | let x = E in e H | e −→h H′ | e′

H | E[e] ↦−→h H′ | E[e′]
eval

(lamh) H | 𝜆z x ′. e −→h H, x ↦→1𝜆zx ′. e | x (fresh x)
(betah) H | (f) y −→h H | inc z; dec f ; e[x:=y] (f ↦→n𝜆zx . e ∈ H)
(leth) H | let x = z in e −→h H | e[x:=z]

(inch) H, x ↦→n v | inc x; e −→h H, x ↦→n+1 v | e
(dech) H, x ↦→n+1 v | dec x; e −→h H, x ↦→n v | e
(dlamh) H, x ↦→1𝜆zx ′.e′ | dec x; e −→h H | dec z; e

Fig. 4. Heap semantics of 𝜆FIP.

This result, which follows directly from our soundness theorem below, does not guarantee that

well-typed programs never get stuck. Instead, it shows the correctness of the reference counted

program under the assumption that the pure semantics does not get stuck and is thus fully orthogonal

to any type system guaranteeing that the pure semantics can never get stuck.

4 LOGICAL RELATION
To show the soundness result, we first define the “roots” of a heap, which are the variables that do

not have the correct reference counts internally. For example, if a variable has referenece count 3 but

is referred only once in the heap, then we have two roots pointing to that variable. We collect roots

in a function from the heap variables to Z, where we write Ix for the indicator function of x which

returns 1 for the argument x and 0 else. As usual, we use pointwise addition and multiplication on

the functions:

roots(∅) = 0

roots(H, x ↦→n v) = roots(H) + n ∗ Ix − Iz1 − . . . − Izn where z = fv(v)
The function roots(H) returns 0 for all variables x that have a reference count which is exactly

equal to the number of times this variable is referred to in the heap. Notice also that the roots of a

heap can be negative: for example, we could model the memory underlying a magic wand x −∗ y as

a heap with roots x ↦→ −1, y ↦→ 1. We call a heap H linear if roots(H) ≥ 0. In that case, we can

also use roots(H) as multiset (where each variable occurs as often as indicated by the function).

We call two heaps H1,H2 compatible if they map equal names x ↦→n v ∈ H1, x ↦→mw ∈ H2, to

equal values v = w. We can join two compatible heaps using the join operator ⊗. This operator
adds the reference counts at each variable but it carefully removes the reference counts of the

2

children to ensure that no internal references are counted twice:

∅ ⊗ H2 = H2

H1, x ↦→n v ⊗ H2 = H1 ⊗ H2, x ↦→n v iff x ̸∈ dom(H2)
H1, x ↦→n v ⊗ H2, x ↦→m v, z ↦→k+1w = H1 ⊗ H2, x ↦→n+m v, z ↦→kw iff z = fv(v)
Lemma 1. (Heap join is associative and commutative)
For all compatible heapsH1,H2,H3:H1 ⊗ (H2 ⊗ H3) = (H1 ⊗ H2) ⊗ H3 andH1 ⊗ H2 = H2 ⊗ H1.

Lemma 2. (The roots of heaps are added by the join operator)
For any two compatible heaps H1,H2: roots(H1 ⊗ H2) = roots(H1) + roots(H2).
This is a useful property, since it justifies the use of the join operator as a form of separating

conjunction for reference counted heaps. We can add a root by incrementing its reference count

and remove a root by decrementing its reference count. Notice that the decrement might have to

recursively decrement the reference counts of the children – but this complexity is encapsulated in

the definition of a root:

Lemma 3. (Incrementing adds a root)
If H | inc x; e ↦−→ H′ | e, then roots(H′) = roots(H) + Ix .
Lemma 4. (Decrementing removes a root)
If H | dec x; e ↦−→∗ H′ | e, then roots(H′) = roots(H) − Ix .
Now we are ready to define a logical relation for the heap semantics. First, we define a denotation

for values:

Definition 1. (Value denotation)
For any closed value v (tuple of closed values v), we define the set JvK (set JvK) as:
J(v1, . . ., vn)K = { (H, (x1, . . ., xn)) | H = H1 ⊗ . . . ⊗ Hn and (Hi, xi) ∈ JviK for i = 1, . . ., n }

J𝜆x ′. eK = { (H, x) | H = H1 ⊗ (x ↦→1𝜆z x ′. e′)
and for some values v, e = e′[z:=v] and (H1, z) ∈ JvK
and for all (H2, y) ∈ JwK with H1 and H2 compatible and e[x ′:=w] ⇓ w ′,
we have that H1 ⊗ H2 | e′[x ′:=y] ↦−→∗

h H3 | y′ and (H3, y′) ∈ Jw ′K
and H3 is compatible with H1,H2 }

Notice that the definition of the value denotation implies that if (H, x) ∈ JvK, then recursively

reading x from the heap H will yield the value v.

Definition 2. (Context substitution)
Wewrite (H, 𝜎) : Γ if 𝜎 is a substitutionmapping the variables Γ = x to values v and (H, x) ∈ JvK.

Building on this foundation, we can now define the logical relation for the heap semantics:

Definition 3. (Logical relation)
We write Γ ⊨ e if for all (H1, 𝜎) : Γ we have that 𝜎 (e) ⇓ v implies H1 | e ↦−→∗

h H2 | x and

(H2, x) ∈ JvK and H2 is compatible with H1.

We can now prove the soundness of the heap semantics:

Theorem 1. (The heap semantics is sound for well-formed Perceus programs)
If Γ ⊢ e, then Γ ⊨ e.
This soundness theorem directly implies our corollary above.

Created with Madoko.net.

3

https://www.madoko.net

	1 Pure semantics
	2 Typing rules
	3 Heap semantics
	4 Logical relation

