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We relate the Adjoint Natural Deduction to the new mode system proposed for OCaml.

We relate the Mode Calculus (Figure 2 of Lorenzen et al. [2024]) to Adjoint Natural Deduction

(Figure 3 of Jang et al. [2024]) and vice versa. We only show this for one mode axis, where we

have the two modes affine A and unrestricted U corresponding to many and once in OCaml. Other

modes are tricky, since they are either not available in Adjoint Natural Deduction (stack allocation,

uniqueness) or not available in OCaml (strictness/relevance). We further exclude space credits ♣
(and with it in-place reuse and borrowing) since these features are not available in Adjoint Natural

Deduction and we exclude linear “with” A & B which is not available in OCaml.

A major difference between the two calculi is their treatment of submoding. In the Mode Calculus,

each term at mode many is also valid at mode once without any changes to its type. For example,

given a list of elements at mode many, and an element at mode once, we can cons the element on the

list and obtain a result list at mode once. In contrast, in the Adjoint Natural Deduction calculus, we

need to explicitly downcast terms, which includes changing the type to a downshifted version of

the original type. On the flipside, we could easily extend the Adjoint Natural Deduction calculus by

types that only exist at certain modes.
1
In the Mode Calculus, each type is available at all modes

(but we can restrict introduction forms to certain modes). Due to these differences, we will ignore

the issue of submoding altogether.

1 EMBEDDING THE MODE CALCULUS IN ADJOINT NATURAL DEDUCTION
For a mode judgement Γ ⊢ e : 𝜏 @ 𝜇, we transform 𝜇⇒ m and t @ 𝜇⇒ Am. Modes:

JmanyK = U
JonceK = A
Keep in mind that the submoding relationship is many < once in the Mode Calculus, but A < U in

Adjoint Natural Deduction. Interpretation of type and mode pairs:

J1 @ 𝜇K = 1J𝜇K
J𝜏1 + 𝜏2 @ 𝜇K = ⊕{ inl : J𝜏1 @ 𝜇K, inr : J𝜏2 @ 𝜇K }
J𝜏1 × 𝜏2 @ 𝜇K = J𝜏1 @ 𝜇K ⊗ J𝜏2 @ 𝜇K
J(𝜏1 @ 𝜇1 → 𝜏2 @ 𝜇2) @ 𝜇3K = ↑J𝜇3K

⊥ (↓J𝜇1K
⊥ J𝜏1 @ 𝜇1K ⊸ ↓J𝜇2K

⊥ J𝜏2 @ 𝜇2K)
J �M 𝜏 @ 𝜇K = ↓JmanyK

𝜇 J 𝜏 @ many K
The only translation which might be surprising is the one for the arrow type. Here, we create

the arrow on the side of Adjoint Natural Deduction at the bottom mode ⊥ (A in this case). This is

maximally restrictive, but we can then upcast the arrow to any mode 𝜇3, and use arguments and

returns of any modes 𝜇1 and 𝜇2. In particular, these three modes are unrelated and no constraints

would be generated between them.

We translate contexts by translating the types. The contexts of the mode calculus do not contain

explicit locks, but the locks act as an operation of the context that deletes inaccessible variables.

J · K = ·
JΓ, x : 𝜏 @ 𝜇K = JΓK , x : J 𝜏 @ 𝜇 K

1
In Adjoint Natural Deduction, we already assume that m ⩾ k implies 𝜎 (m) ⊇ 𝜎 (k) . We could strengthen this to an

inclusion of type universes such that m ⩾ k and x : Am implies x : Ak . This would then allow us to add a submoding

rule to the calculus. A calculus with separate type universes, modalties and submoding can be modelled as a double

category [Katsumata 2018; Tang et al. 2024].
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The translation for introduction terms follows directly from the translation of types above (where

free variables introduced by the translation are assumed to be fresh):

J()K = ()
JxK = down x
Jinl eK = match JeK (down x ⇒ down (inl(x)))
Jinr eK = match JeK (down x ⇒ down (inr(x)))
J(e1, e2)K= match Je1K (down x ⇒ match Je2K (down y⇒ down (x, y)))
J𝜆x . eK = down (susp (𝜆x . match x (down x ⇒ JeK)))
JboxM eK = match JeK (down x ⇒ down (down x))
I do not pay special attention to synthesizability in the translation above. It may thus be necessary

to add extra type annotations into the translated term; but this would be straightforward to do.

Similarly for eliminations:

Jcase e1 with { inl x ⇒ e2; inr y⇒ e3 }K = match Je1K (down z⇒
match z (inl(x) ⇒ Je2K; inr(y) ⇒ Je3K))

Jlet (x, y) = e1 in e2K = match Je1K (down z⇒ match z ((x, y) ⇒ Je2K))
Je1 e2K = match Je1K (down x ⇒ (force x) Je2K)
JunboxM eK = match JeK (down x ⇒ match x (down x ⇒ down x))
Notice that we change the syntax for splitting pairs slightly to avoid considering the extra space

credit. With this we can prove the following lemma:

Lemma 1. (Translation to AND)
If Γ ⊢ e : 𝜏 @ 𝜇, then JΓK ⊢ JeK⇔ ↓𝜇⊥ J𝜏 @ 𝜇K.

2 EMBEDDING ADJOINT NATURAL DEDUCTION IN THE MODE CALCULUS
Conversely, we can embed Adjoint Natural Deduction in the Mode Calculus.

JU K = many

JAK = once

Interpretation of types. For simplicity, we assume that all sums contain only two labels.

J1mK = 1

⊕{ inl : Am, inr : Bm } = JAmK + JBmK
JAm ⊗ BmK = JAmK × JBmK
(Am ⊸ Bm) = JAmK @ JmK → JBmK @ JmK
J ↓Um AU K = �M JAU K
J ↓AA AAK = JAAK
J ↑mk AkK = 1 @ many→ JAkK @ JkK
Notice that in the Mode Calculus there is no box type for once variables. In particular, while we

expect to support mode polymorphism over the modes on function arrows in the future, we will

not be able to express mode polymorphism over boxes.

Contexts:

J · K = ·
JΓ, x : AmK = JΓK , x : J A K @ J m K
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The translation for introduction terms follows directly from the translation of types above (where

free variables introduced by the translation are assumed to be fresh):

J()K = ()
JxK = x
Jinl eK = inl JeK
Jinr eK = inr JeK
J(e1, e2)K = (Je1K, Je2K)
J𝜆x . eK = 𝜆x . JeK
JdownU eK= boxM JeK
JdownA eK= JeK
Jsusp eK = 𝜆x . JeK
and similarly for eliminations:

Jmatch s (inl(x) ⇒ e1; inr(y) ⇒ e2)K= case JsK with { inl x ⇒ Je1K; inr y⇒ Je2K }
Jmatch s ((x, y) ⇒ e)K = let (x, y) = JsK in JeK
Jmatch s (downU x ⇒ e)K = let x = unboxM JsK in JeK
Jmatch s (downA x ⇒ e)K = let x = JsK in JeK
Jmatch s (() ⇒ e)K = let x = JsK in JeK
Jforce sK = JsK ()
Js eK = JsK JeK
With this, we can prove the following lemma:

Lemma 2. (Translation from AND)
If Δ ⊢ e⇔ Am, then JΔK ⊢ JeK : JAK @ JmK.

3 PROOFS
Lemma 3. (Context splitting)
We have JΓ1 + Γ2K = JΓ1K ; JΓ2K.
Proof. By straightforward induction.

Lemma 4. (Correctness of the translation)
If Γ ⊢ e : 𝜏 @ 𝜇, then JΓK ⊢ JeK⇔ ↓𝜇⊥ J𝜏 @ 𝜇K.
Proof. By induction over the typing derivation. We re-state the rules of the Mode Calculus with

the premises and conclusion translated, and then derive the rule in the Adjoint Natural Deduction

calculus.

JΓK, x : J𝜏 @ 𝜇K, JΓ′K ⊢ down x ⇔ ↓𝜇⊥ J𝜏 @ 𝜇K
var

By the hyp and [↓ I ] rules. Notice that all modes considered here have weakening.

JΓ, µ 𝜇3K, x : J𝜏1 @ 𝜇1K ⊢ JeK⇔ ↓𝜇2⊥ J𝜏2 @ 𝜇2K

JΓK ⊢ down (susp (𝜆x . match x (down x ⇒ JeK))) ⇔ ↓𝜇3⊥ ↑
𝜇3
⊥ (↓𝜇1⊥ J𝜏1 @ 𝜇1K ⊸ ↓𝜇2⊥ J𝜏2 @ 𝜇2K)

lam

The µ 𝜇3 operation deletes all variables from Γ that are at a higher mode than 𝜇3. Conversely, in the

translated version, all variables at a lower mode than J𝜇3K are deleted. This allows to use the [↓ I ]
rule. We can eliminate the ↓𝜇1⊥ of the argument, since the return value of JeK is also at the bottom

mode. This translation also motivates our choice of the µ symbol in the function abstraction rule:

our functions act as IS4 boxes (see Example 8 of Jang et al. [2024]).

JΓ1K ⊢ Je1K⇔ ↓𝜇3⊥ ↑
𝜇3
⊥ (↓𝜇1⊥ J𝜏1 @ 𝜇1K ⊸ ↓𝜇2⊥ J𝜏2 @ 𝜇2K) JΓ2K ⊢ Je2K : ↓𝜇1⊥ J𝜏1 @ 𝜇1K

JΓ1K ; JΓ2K ⊢ match Je1K (down x ⇒ (force x) Je2K) ⇔ ↓𝜇2⊥ J𝜏2 @ 𝜇2K
app
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We can eliminate the ↓𝜇3⊥ of the function, since the result is at mode bottom.

JΓK ⊢ () ⇔ 1m
unit

Obvious.

JΓK ⊢ JeK⇔ ↓𝜇⊥ J𝜏1 @ 𝜇K

JΓK ⊢ match JeK (down x ⇒ down (inl(x))) ⇔ ↓𝜇⊥ ⊕ inl : J𝜏1 @ 𝜇K; inr : J𝜏2 @ 𝜇K
inl

JΓK ⊢ JeK⇔ ↓𝜇⊥ J𝜏2 @ 𝜇K

JΓK ⊢ match JeK (down x ⇒ down (inr(x))) ⇔ ↓𝜇⊥ ⊕ inl : J𝜏1 @ 𝜇K; inr : J𝜏2 @ 𝜇K
inr

JΓ1K ⊢ Je1K⇔ ↓𝜇⊥ J𝜏1 @ 𝜇K JΓ2K ⊢ Je2K⇔ ↓𝜇⊥ J𝜏2 @ 𝜇K

JΓ1K ; JΓ2K ⊢ match Je1K (down x ⇒ match Je2K (down y⇒ down (x, y)))
⇔ ↓𝜇⊥ J𝜏1 @ 𝜇K ⊗ J𝜏2 @ 𝜇K

pair

We can eliminate the ↓𝜇⊥ of the argument at mode bottom. We can then re-introduce the downarrow

since we only use the result at mode J𝜇K.

JΓ1K ⊢ Je1K⇔ ↓𝜇1⊥ ⊕ inl : J𝜏1 @ 𝜇1K; inr : J𝜏2 @ 𝜇1K
JΓ2K, x : J𝜏1 @ 𝜇1K ⊢ Je2K⇔ ↓𝜇2⊥ J𝜏3 @ 𝜇2K
JΓ2K, y : J𝜏2 @ 𝜇1K ⊢ Je3K⇔ ↓𝜇2⊥ J𝜏3 @ 𝜇2K

JΓ1K ; JΓ2K ⊢ match Je1K (down z⇒ match z (inl(x) ⇒ Je2K; inr(y) ⇒ Je3K) ⇔ ↓𝜇2⊥ J𝜏3 @ 𝜇2K
case

JΓ1K ⊢ Je1K⇔ ↓𝜇1⊥ (J𝜏1 @ 𝜇1K ⊗ J𝜏2 @ 𝜇1K)
JΓ2K, x : J𝜏1 @ 𝜇1K, y : J𝜏2 @ 𝜇1K ⊢ Je2K⇔ ↓𝜇2⊥ J𝜏3 @ 𝜇2K

JΓ1K ; JΓ2K ⊢ match Je1K (down z⇒ match z ((x, y) ⇒ Je2K) ⇔ ↓𝜇2⊥ J𝜏3 @ 𝜇2K
split

As before, we eliminate the downarrow of the scrutinee. This gives us a value (sum or pair) at mode

J𝜇1K. When matching on this value, we need to ensure that every element in the context is larger

or equal to J𝜇1K, but this is clear since we only use the variables z in that context.

JΓK ⊢ JeK⇔ ↓U⊥ Jt @ manyK

JΓK ⊢ match JeK (down x ⇒ down (down x)) ⇔ ↓𝜇⊥↓U𝜇 Jt @ manyK
box

We need to split the downshift into two downshifts, hence the seemingly redundant elimination

and introduction of the downshift. This part of the translation shows that the box of the mode

calculus corresponds to the downshift of Adjoint Natural Deduction.

JΓK ⊢ JeK⇔ ↓𝜇⊥↓U𝜇 Jt @ 𝜇K

JΓK ⊢ match JeK (down x ⇒ match x (down x ⇒ down x)) ⇔ ↓U⊥ Jt @ manyK
unbox

Conversely, in this rule, we have to merge two downshifts into one.

Lemma 5. (Translation from AND)
If Δ ⊢ e⇔ Am, then JΔK ⊢ JeK : JAK @ JmK.
Proof. By induction on the typing derivation. We re-state the rules of Adjoint Natural Deduction

with the premises and conclusion translated, and then derive the rule in the Mode Calculus.

Γ = x : JAK @ JmK

JΔW K + Γ ⊢ x : JAK @ JmK
hyp
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By the var rule.

JΔK, x : JAK @ JmK ⊢ JeK : JBK @ JmK

JΔK ⊢ 𝜆x . JeK : (JAK @ JmK → JBK @ JmK) @ JmK
I

Since we can assume that Δ ⩾ m and thus JΔK ⩽ JmK, we can omit the lock operation on JΔK.

JΔK ⊢ JsK : (JAK @ JmK → JBK @ JmK) @ JmK JΔ′K ⊢ JeK : JAK @ JmK

JΔK + JΔ′K ⊢ JsK JeK : JBK @ JmK
E

Obvious.

JΔK ⊢ JeK : JAK @ JkK

JΔK ⊢ 𝜆x . JeK : (1 @ many→ JAK @ JkK) @ JmK
I

Since m ⩾ k, thus JmK ⩽ JkK. Since we can assume that Δ ⩾ m, and thus JΔK ⩽ JmK ⩽ JkK,
we can omit the lock operation on JΔK.

Δ′ ⩾ m JΔ′K ⊢ JsK : (1 @ many→ JAK @ JkK) @ JmK

JΔW K + JΔ′K ⊢ JsK () : JAK @ JkK
E

Obvious. Note that we do not need the side-condition Δ′ ⩾ m directly (though it has to be present

to maintain the presupposition).

JΔK ⊢ Je1K : JAK @ JmK JΔ′K ⊢ Je2K : JBK @ JmK

JΔK + JΔ′K ⊢ (Je1K, Je2K) : JAK × JBK @ JmK
I

JΔW K ⊢ () : 1 @ JmK
1I

JΔK ⊢ JeK : JAK @ JmK

JΔK ⊢ inl JeK : JAK + JBK @ JmK
I

JΔK ⊢ JeK : JAK @ JmK

JΔK ⊢ inr JeK : JAK + JBK @ JmK
I

Obvious.

JΔK ⊢ JsK : JAK × JBK @ JmK Δ ⩾ m ⩾ r
JΔ′K, x : JAK @ JmK, y : JBK @ JmK ⊢ Je′K : JCK @ JrK

JΔK + JΔ′K ⊢ let (x, y) = JsK in Je′K : JCK @ JrK
E

JΔK ⊢ JsK : 1 @ JmK Δ ⩾ m ⩾ r
JΔ′K ⊢ Je′K : JCK @ JrK

JΔK + JΔ′K ⊢ let x = JsK in Je′K : JCK @ JrK
1E

JΔK ⊢ JsK : JAK + JBK @ JmK Δ ⩾ m ⩾ r
JΔ′K, x : JAK @ JmK ⊢ Je1K : JCK @ JrK JΔ′K, y : JBK @ JmK ⊢ Je2K : JCK @ JrK

JΔK + JΔ′K ⊢ case JsK (inl x → Je1K; inr y → Je2K) : JCK @ JrK
E

Obvious. Note that we do not need the side-conditions Δ ⩾ m ⩾ r directly (though they have to

be present to maintain the presupposition).
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Δ′ ⩾ n JΔ′K ⊢ JeK : JAK @ many

JΔW K + JΔ′K ⊢ boxM JeK : �M JAK @ JmK
I

Δ′ ⩾ once JΔ′K ⊢ JeK : JAK @ once

JΔW K + JΔ′K ⊢ JeK : JAK @ once

I

Follows from the box-rule. The sub-rule allows us to discard the JΔW K context.

JΔK ⊢ JsK : �M JAK @ JmK Δ ⩾ m ⩾ r
JΔ′K, x : JAK @ many ⊢ Je′K : JCK @ JrK

JΔK + JΔ′K ⊢ let x = unboxM JsK in Je′K : JCK @ JrK
E

JΔK ⊢ JsK : JAK @ once Δ ⩾ once

JΔ′K, x : JAK @ once ⊢ Je′K : JCK @ JrK

JΔK + JΔ′K ⊢ let x = JsK in Je′K : JCK @ JrK
E

Obvious.
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