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fun splay(pivot, t)
match t
Node(a, x, b) -> if x > pivot then match a // search for pivot in left subtree
Node(a1, y, a2) -> if y < pivot then // search for pivot in right subtree
val (small, big) = splay(pivot, a2)    // recursively partition the subtree
(Node(a1, y, small), Node(big, x, b))  // add subtrees to the appropriate pile

...

Constructor Contexts & Zippers

Functional Binary Search Trees

Bottom-Up Algorithms Top-Down Algorithms

Benchmarks

Ø Great for reasoning:
Ø Typical exercise in verification courses
Ø Can be automatically synthesized from a specification
Ø Amortized time complexity can be proven automatically

Ø But performance is lacking..

Ø Let’s consider splay trees as an example

Ø Our new algorithms in Koka perform on-par with the original C 
implementations of move-to-root, splay, zip and red-black trees

Original, imperative algorithms

fip fun splay( zipper, b, x, c )
match zipper
NodeR(a,y,NodeL(up,z,d)) ->
up.splay( Node(a,y,b), x, Node(c,z,d) )

...

Ø A bottom-up insertion algorithm 
traverses down the tree 
searching for the new key and 
then splays on the way back up

Ø We represent the path upwards 
through the tree using a zipper

Ø New keys are inserted at the root with two children: the existing keys smaller and 
bigger than the new key, as computed by splay (above).

Ø But this allocates 𝒪(log	n)	new nodes and uses 𝒪(log	n)	stack. Can we do better?

Ø A top-down algorithm traverses down 
the tree searching for the new key and 
splays while going down

Ø We represent the already-traversed tree 
using two constructor contexts L and R

fip fun splay( t, k, l_ctx, r_ctx )
match t
Node(ayzb,x,c) -> if x > k then match ayzb
Node(a,y,zb) -> if y < k then
splay(zb,k, l_ctx ++ ctx Node(a,y,_), r_ctx ++ ctx Node(_,x,c))

...

Ø Our functional algorithm uses 𝒪(1)	new nodes and 𝒪(1)	stack: It 
corresponds exactly to the description by Sleator & Tarjan (picture above)

Ø Our functional algorithm uses 𝒪(1)	new nodes and 𝒪(1)	stack: It corresponds exactly to the 
top-down description by Sleator & Tarjan (Fig. 11 of their paper, reproduced above)

Ø Both describe data structures with 
constant time access to a single hole 

Ø Constructor contexts store the path 
from the root to the hole and an extra 
pointer to the hole

Ø But zippers invert pointers: they store 
the path from the hole to the root

Ø Both are semantically immutable: If 
contexts are shared, our runtime 
copies the path from root to hole and 
creates a new hole-pointer

Ø We formalize precisely the 
imperative programs from 
the original papers in Iris 
HeapLang

Ø Using only loop invariants 
extracted from the 
functional programs, we 
can show functional 
correctness

Ø This shows that the 
functional programs 
capture the essence of the 
original algorithms

In-Place Reuse

fip fun reverse( xs, acc )
match xs
Cons(x,xx) -> val loc = if is-unique(xs) // refcount==1?

then &xs // then reuse the memory, else allocate:
else { dup(x); dup(xx); decref(xs); alloc(2) }

reverse( xx, Cons@loc(x, acc))
Nil -> Nil

Ø One can safely update an 
immutable data structure in-
place given unique ownership

Ø We use reference-counting to 
detect at runtime which blocks 
are unique

fip fun reverse( xs, acc )
match xs
Cons(x,xx) ->
reverse( xx, Cons(x, acc))

Nil -> Nil

^

Read our paper:

reuse opportunity

Ø Our compiler then detects reuse opportunities and removes allocations:

For unique data this function is fully in-place

reuse
reuse

(++.) : cctx<a,b> -> b -> a

(++) : cctx<a,b> -> cctx<b,c> -> cctx<a,c>
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