
Programmers’ Eternal Dilemma: The Choice Between

Pure Reasoning

Raw Performance
&

Wouter SwierstraAnton Lorenzen Daan Leijen Sam Lindley

fun splay(pivot, t)
match t
Node(a, x, b) -> if x > pivot then match a // search for pivot in left subtree
Node(a1, y, a2) -> if y < pivot then // search for pivot in right subtree
val (small, big) = splay(pivot, a2) // recursively partition the subtree
(Node(a1, y, small), Node(big, x, b)) // add subtrees to the appropriate pile

...

Constructor Contexts & Zippers

Functional Binary Search Trees

Bottom-Up Algorithms Top-Down Algorithms

Benchmarks

Ø Great for reasoning:
Ø Typical exercise in verification courses
Ø Can be automatically synthesized from a specification
Ø Amortized time complexity can be proven automatically

Ø But performance is lacking..

Ø Let’s consider splay trees as an example

Ø Our new algorithms in Koka perform on-par with the original C
implementations of move-to-root, splay, zip and red-black trees

Original, imperative algorithms

fip fun splay(zipper, b, x, c)
match zipper
NodeR(a,y,NodeL(up,z,d)) ->
up.splay(Node(a,y,b), x, Node(c,z,d))

...

Ø A bottom-up insertion algorithm
traverses down the tree
searching for the new key and
then splays on the way back up

Ø We represent the path upwards
through the tree using a zipper

Ø New keys are inserted at the root with two children: the existing keys smaller and
bigger than the new key, as computed by splay (above).

Ø But this allocates 𝒪(log	n)	new nodes and uses 𝒪(log	n)	stack. Can we do better?

Ø A top-down algorithm traverses down
the tree searching for the new key and
splays while going down

Ø We represent the already-traversed tree
using two constructor contexts L and R

fip fun splay(t, k, l_ctx, r_ctx)
match t
Node(ayzb,x,c) -> if x > k then match ayzb
Node(a,y,zb) -> if y < k then
splay(zb,k, l_ctx ++ ctx Node(a,y,_), r_ctx ++ ctx Node(_,x,c))

...

Ø Our functional algorithm uses 𝒪(1)	new nodes and 𝒪(1)	stack: It
corresponds exactly to the description by Sleator & Tarjan (picture above)

Ø Our functional algorithm uses 𝒪(1)	new nodes and 𝒪(1)	stack: It corresponds exactly to the
top-down description by Sleator & Tarjan (Fig. 11 of their paper, reproduced above)

Ø Both describe data structures with
constant time access to a single hole

Ø Constructor contexts store the path
from the root to the hole and an extra
pointer to the hole

Ø But zippers invert pointers: they store
the path from the hole to the root

Ø Both are semantically immutable: If
contexts are shared, our runtime
copies the path from root to hole and
creates a new hole-pointer

Ø We formalize precisely the
imperative programs from
the original papers in Iris
HeapLang

Ø Using only loop invariants
extracted from the
functional programs, we
can show functional
correctness

Ø This shows that the
functional programs
capture the essence of the
original algorithms

In-Place Reuse

fip fun reverse(xs, acc)
match xs
Cons(x,xx) -> val loc = if is-unique(xs) // refcount==1?

then &xs // then reuse the memory, else allocate:
else { dup(x); dup(xx); decref(xs); alloc(2) }

reverse(xx, Cons@loc(x, acc))
Nil -> Nil

Ø One can safely update an
immutable data structure in-
place given unique ownership

Ø We use reference-counting to
detect at runtime which blocks
are unique

fip fun reverse(xs, acc)
match xs
Cons(x,xx) ->
reverse(xx, Cons(x, acc))

Nil -> Nil

^

Read our paper:

reuse opportunity

Ø Our compiler then detects reuse opportunities and removes allocations:

For unique data this function is fully in-place

reuse
reuse

(++.) : cctx<a,b> -> b -> a

(++) : cctx<a,b> -> cctx<b,c> -> cctx<a,c>

Node xl

Node _ y r

ctx Node(l, x, Node(_, y, r))

NodeL(NodeR(l, x, R), y, r)

NodeR xl

NodeL y r

R

x

yl

r

Zipper:Context:Tree:

