Programmers' Eternal Dilemma: The Choice Between Pure Reasoning

Raw Performance

Anton Lorenzen Daan Leijen Wouter Swierstra

Sam Lindley

Functional Binary Search Trees

Great for **reasoning**:

> Typical exercise in verification courses

- Can be automatically synthesized from a specification
- > Amortized time complexity can be proven automatically
- > But **performance** is lacking..
- Let's consider splay trees as an example

In-Place Reuse

- \succ One can safely update an immutable data structure inplace given unique ownership
- > We use reference-counting to detect at runtime which blocks are unique

For unique data this function
<pre>fip fun reverse(xs</pre>
match xs
Cons(x,xx) ->
reverse(xx, (
Nil -> Nil

 \succ Our compiler then detects reuse opportunities and removes allocations:

fip fun reverse(xs, acc) match xs Cons(x,xx) -> val loc = if is-unique(xs) // refcount==1? then &xs // then reuse the memory, else allocate: else { dup(x); dup(xx); decref(xs); alloc(2) } reverse(xx, Cons@loc(x, acc)) Nil -> Nil

Bottom-Up Algorithms

- > A bottom-up insertion algorithm traverses down the tree searching for the new key and then splays on the way back up
- > We represent the path upwards through the tree using a *zipper*

 \succ Our functional algorithm uses $\mathcal{O}(1)$ new nodes and $\mathcal{O}(1)$ stack: It corresponds exactly to the description by Sleator & Tarjan (picture above)

fip fun splay(zipper, b, x, c) match zipper NodeR(a,y,NodeL(up,z,d)) -> up.splay(Node(a,y,b), x, Node(c,z,d))

Original, imperative algorithms

Definition heap_mtr_insert_td : val := fun: (name, root) { var: left_dummy := #0 in var: right_dummy := #0 in var: node := root in var: left_hook := &left_dummy in var: right_hook := &right_dummy in while: (true) { if: (node != #0) { if: (node->value == name) *left_hook = node->left;; *right_hook = node->right; root = node;; break else { if: (node->value > name) *right_hook = node;; right_hook = &(node->left); node = node->left *left_hook = node;; left_hook = &(node->right); node = node->right else { *left_hook = #0;; *right_hook = #0;; root = AllocN #3 #0; root->value = name; break

root->left = left_dummy;

ret: root

root->right = right_dummy;;

node := root; left_hook := addr(left(dummy)); right_hook := addr(right(dummy)) while node ≠ null do if value(node) = name then $0(left_hook) := left(node);$ 0(right_hook) := right(node); root := node; go to bottom if value(node) > name then 0(right_hook) := node; right_hook := addr(left(node)); node := left(node)0(left_hook) := node; left_hook := addr(right(node)); node := right(node) end: $0(left_hook) := null;$ O(right_hook) := null; root := new_node () value(root) := name;

left(root) := left(dummy); right(root) := right(dummy)

bottom:

HeapLang extracted from the can show functional correctness This shows that the functional programs

> New keys are inserted at the root with two children: the existing keys smaller and bigger than the new key, as computed by *splay* (above). > But this allocates $\mathcal{O}(\log n)$ new nodes and uses $\mathcal{O}(\log n)$ stack. Can we do better?

Constructor Contexts & Zippers

> We formalize precisely the imperative programs from the original papers in Iris

Using only loop invariants functional programs, we

capture the essence of the original algorithms

- > Both describe data structures with constant time access to a single hole
- > Constructor contexts store the path from the root to the hole and an extra pointer to the hole
- But zippers invert pointers: they store the path from the *hole to the root*

	(++.)	: cctx <a,< th=""><th>b></th><th>-></th><th>b -</th><th>-></th><th>а</th></a,<>	b>	->	b -	->	а
(++) : cctx <a,< th=""><th>o> -> (</th><th>cctx<b,c></b,c></th><th>-></th><th>cct</th><th>:x<a< th=""><th>a,c</th><th>:></th></a<></th></a,<>	o> -> (cctx <b,c></b,c>	->	cct	:x <a< th=""><th>a,c</th><th>:></th></a<>	a,c	:>

 \succ Both are semantically immutable: If contexts are shared, our runtime copies the path from root to hole and creates a new hole-pointer

Top-Down Algorithms

- > A top-down algorithm traverses down the tree searching for the new key and splays while going down
- > We represent the already-traversed tree using two constructor contexts L and R
- top-down description by Sleator & Tarjan (Fig. 11 of their paper, reproduced above)

<pre>fip fun splay(t, k, l_ctx, r match t</pre>	_ctx)
Node(avzb.x.c) -> if x >	k then
Node(a,y,zb) -> if y <	k then
<pre>splay(zb,k, l_ctx ++</pre>	ctx Noo

Benchmarks

Our new algorithms in Koka perform on-par with the original C implementations of *move-to-root*, *splay*, *zip* and *red-black* trees

