
Optimizing Reference Counting
with Borrowing

Anton Felix Lorenzen

Geboren am 27. Juli 1998 in Hamburg

29th November 2021

Masterthesis in Computer Science

Betreuer: Daan Leijen, Microsoft Research

Zweitgutachter: Prof. Dr. Heiko Röglin

Computer Science

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Abstract

Reference counting is a technique of automatic memory
management that frees memory as soon as the number of
references pointing to it drops to zero. The Perceus al-
gorithm can insert instructions to maintain reference counts
at compile time such that programs are provably garbage-free:
memory will be freed as soon as it becomes unused. In this
thesis, we show how borrowing can improve performance by
reducing the number of reference count instructions. The
resulting programs are not garbage-free, but frame-limited :
their peak memory usage is not more than a constant amount
times the current number of stack frames higher than without
borrowing.

Zusammenfassung

Referenzzählung ist eine Technik der automatischen Spei-
cherverwaltung, die ein Objekt freigibt sobald die Zahl der
Referenzen, die auf es zeigen, null ist. Der Perceus Algorith-
mus kann Instruktionen in ein Programm einfügen, die diese
Zahl so aktualisieren, dass Programme beweisbar garbage-
free sind: Speicher wird direkt freigegeben wenn er nicht
mehr verwendet werden kann. In dieser Arbeit zeigen wir
das borrowing durch Reduktion der Zahl der Instruktionen
die Geschwindigkeit von Programmen steigern kann. Diese
Programme sind nicht garbage-free, sondern frame-limited :
ihre höchste Speichernutzung ist nicht mehr als ein konstan-
ter Faktor mal die aktuelle Zahl an stack frames höher als
ohne borrowing.

Contents

1 Introduction 1
1.1 Notation . 3
1.2 Overview . 3
1.3 Contributions . 4
1.4 Acknowledgements . 4

2 Memory management 6
2.1 Manual memory management & RAII . 8
2.2 Tracing garbage collectors . 11
2.3 Reference counting . 12
2.4 A note on memory ordering . 13

3 A Short Tour of Koka 15
3.1 Algebraic data types . 15
3.2 Functions on ADTs . 17
3.3 Higher-order functions . 19
3.4 Static reference count instructions . 20
3.5 Reuse analysis . 22
3.6 Drop specialization . 23
3.7 Borrowing . 24

4 Link-inverted datastructures 26
4.1 Binary trees . 26
4.2 Link inversion and the Zipper . 30
4.3 Avoiding cycles with Zippers . 32
4.4 Splay trees . 33
4.5 Red-black trees . 36
4.6 B-trees and constructor padding . 38
4.7 Conclusion . 40

5 Calculi for program transformations 41
5.1 Computation . 41
5.2 A-normalization . 44

2

5.3 Static reference count instructions . 45
5.4 Perceus . 48
5.5 Properties . 49

6 Borrowing 51
6.1 Normalization . 51
6.2 Multi-variable lambdas . 52
6.3 Wrapping . 55
6.4 When to borrow? . 56
6.5 Lean’s borrow inference . 57

7 Frame-limited transformations 59
7.1 Modelling reuse analysis and borrowing 59
7.2 Garbage-free star-rule . 60
7.3 Frame-limited star-rule . 61
7.4 Peak frame-limited star-rule . 62
7.5 Conclusion . 64

3

Chapter 1

Introduction

There are various techniques that take the chore of manually requesting and freeing the
memory that a program uses from the programmer. Reference counting is one of the
easiest ones: It simply maintains the number of references that refer to an object and
frees it when this number becomes zero. It is possible to implement this without much
compiler support (e.g. C++’s shared ptr or Rusts RC<T>), but an implementation
inside a compiler will be able to insert the instructions that increase or decrease the
reference counts statically (in other words: at compile time) and optimize them further.

In September 2019 Sebastian Ullrich and Leonardo de Moura presented the paper
”Counting Immutable Beans” [Ud19], which introduced their method for inserting static
reference count instructions into programs compiled with the functional programming
language Lean. They described this algorithm in the context of Lean’s internal calculus
and gave several optimization strategies:

1. Reuse analysis searches for the situation that the reference count of an object is
decreased followed by the creation of a new object of similar size. Then it replaces
these instructions by a reuse instruction, which, at runtime, checks if the first object
can be freed, and in that case uses it directly to construct the second object. This
avoids calling a memory allocator, which has to mark the old object as freed and
search for space for the new object at significant runtime expense.

2. Incrementing and decrementing reference counts is quite expensive itself and some-
times unnecessary: While traversing a datastructure we will increase the reference
count of every node we enter and decrease the reference count of every node we
leave – but at the end the reference counts are as before. Here, borrowing helps:
For a certain time, we do not update the reference counts of objects that a certain
variable refers to. Unfortunately, this can increase the size of memory needed by the
program and they present one benchmark where their borrow inference algorithm
applied borrowing such that the performance became worse.

3. Still, incrementing and decrementing reference counts is expensive even with bor-
rowing, since the reference counts of thread-shared objects need to be atomics. By

1

distinguishing between possibly thread-shared and all other objects we can use
normal integers for the reference counts of most objects in the program.

Aside from a short remark at the end of chapter 2, we1 will largely ignore multi-core
programs in this work. Similarly, these techniques have analogues in previous work,
which we will not go into.

Figure 1.1: Relative execution time and peak
working set with respect to the implementation of
the Perceus algorithm in Koka (no-opt disables
reuse analysis) [Rei+21].

This work was extended in Novem-
ber 2020 by Alex Reinking, Ningning
Xie, Leonardo de Moura and Daan
Leijen in the paper ”Perceus: Garbage
Free Reference Counting with Reuse”
[Rei+21]. They presented the λ1 calcu-
lus that characterized the ways that ref-
erence counting instructions can be cor-
rectly inserted such that no space leaks
may occur. Further, they gave precise
semantics for how the heap of a pro-
gram would change during runtime and
a new formalization of the algorithm
for inserting reference count instruc-
tions in this framework. Importantly,
this allowed them to prove that the al-
gorithm is garbage-free: The only time
that memory may be in the heap even
though it is not used by the program
anymore is directly before it will be
freed by the algorithm!

As a result, the peak memory us-
age of benchmark programs written in
their programming language Koka is
the lowest of all implementations they
consider. Furthermore, the perform-
ance is quite competitive as can be
seen in the chart 1.1.

They further show how program-
mers can write algorithms that take
advantage of reuse analysis: It is pos-
sible to write recursive functions that
look like pseudo-code but compile into
efficient imperative loops that do not allocate any memory. They posit that this represents
a paradigm shift and call it FBIP: functional but in-place.

1Since this thesis was written by a single author, the pronoun ”we” should be understood as to refer
to the shared intent of author and reader.

2

In this thesis, we will introduce briefly the theory of garbage collection, functional
programming and programming language semantics. We will present further examples
for the FBIP paradigm that increase both the readability and performance of widely
studied algorithms. And, after a recapitulation of the Perceus algorithm, we will present
an implementation of borrowing for it.

1.1 Notation

We will refer to several bytes in memory that ”belong together” in the way the bytes of
a struct belong together, as a cell, a value or an object. This terminology does not refer
to any specific programming model (like object orientation). Such objects may contain
references, pointers, to other objects and can be referred to by other objects or variables
of the program. When an object cannot be accessed by the program anymore (because
there is no path of references from a variable to it) we will call it dead or unused and else
live or used. When discussing reference counting, we will assume that each such object
stores a reference count. Then applying an inc or dup instruction to it will increase the
reference count by one. Applying a dec or drop instruction will decrease the reference
count by one and, if the reference count becomes zero this way, delete the object from
memory. Dupping or dropping an object refers to this procedure.

1.2 Overview

The first part of this thesis approaches the topic from a practical standpoint.

• First, we give an overview over different memory management techniques and discuss
the advantages and drawbacks of reference counting. This chapter is intended for
an audience that is unfamiliar with reference counting and can safely be skipped.

• In the next chapter we dive into the Koka language and discuss the properties of
functional programming that make reference counting especially effective in this
paradigm. We then discuss some examples of static reference counts and reuse
analysis.

• We conclude by discussing the design of datastructures in the FBIP paradigm.
We present a short introduction to Zippers and then apply the visitor pattern
to red-black trees and splay trees. We give benchmarks to show that they are
competitive against the state of the art. Finally, we will discuss how better reuse
behavior compares against higher memory consumption at the example of B-trees.

The second part discusses the formal aspects of borrowing.

• At first, we introduce the necessary calculi to reason about programs. This includes
describing the internal representation of Koka and the methods for reasoning
about its semantics: lambda calculus, evaluation contexts, sequent calculi, A-
normalization. Then we describe the λ1 calculus, Perceus algorithm and the heap
semantics as in the paper by Reinking, Xie et al.

3

• We explore the design space around borrowing and introduce necessary conditions
for borrowing. We describe the syntactical constructs and normalization to achieve
these and then extend the λ1 calculus. We describe Lean’s borrowing inference,
but give evidence that such an inference will not work well for Koka.

• Finally, we discuss a new notion that gives a reasonable bound on the space usage of
transformed programs. This allows us to formally specify in which cases borrowing
can be applied without worrying about potential increases in memory consumption.

1.3 Contributions

In this thesis we make the following contributions:
We extend the λ1 calculus to allow borrowing and show that our formalization captures

the essential properties of borrowing. In particular, we discuss how functions that use
borrowing can be passed to higher-order functions, which was not covered explicitly in
previous work. Based on this description, we provide an implementation of borrowing in
Koka and show that it can improve performance on some benchmarks.

We develop further benchmarks for Koka based on datastructures for heaps and sets.
We find that the FBIP paradigm applies to these algorithms and show that it can not only
reduce memory consumption but also make the algorithms more elegant. We describe
known techniques for deriving such algorithms and show that they are competitive against
well-known textbook solutions.

While we require the programmer to choose when to apply borrowing, Ullrich and
de Moura also give an inference that can make this choice automatically. We show
that their inference can lead to sharp increases in memory usage which can negatively
impact performance. We argue that a borrow inference should be frame-limited : In the
worst case, it should only increase peak memory consumption by a constant factor times
the number of stack frames. We give simple calculus for reasoning about frame-limited
transformations and give rules that allow many interesting applications of borrowing
while remaining frame-limited.

As part of the work on this thesis, but not described here, we also found that reuse
analysis could be made significantly more powerful while not holding on to more memory
than necessary for reuse. We proved, together with Daan Leijen, that reuse analysis is
itself frame-limited [LL21].

1.4 Acknowledgements

I was very happy to write a thesis on an active topic in functional programming research
and I am grateful to those who helped make this opportunity a reality: Daan Leijen
who took a chance on a student he had no previous relationship with, Heiko Röglin who
agreed to supervise a project outside his area of work, and the University of Bonn for
accepting this thesis as part of a masters degree in Computer Science.

4

Further, I want to thank the proof readers who pointed out errors and helped make
the prose more approachable: Joost Fischer, Jan Eube and Samantha Tröstrum.

5

Chapter 2

Memory management

Memory is not only necessary to do non-trivial computations, but it can also significantly
speed up algorithms when used right. Yet, it is often scarce and slow to access and is
therefore a resource that needs to be carefully managed. This chapter aims to give an
overview of some techniques that are used today. We will not focus on completeness or
an objective comparison between competing approaches in this treatment, but rather
aim to give an intuition for the problems that memory management systems need to
solve. We will illustrate this by four major paradigms: manual memory management,
RAII, tracing garbage collectors and reference counting.

Yet, even manual memory management is not as manual as it sounds. First, a program
usually does not have direct access to the physical memory of a computer. Even for
security reasons alone it seems sensible to disallow this and so most operating system will
assign each process its own memory regions to access. These memory regions are assigned
in pages of 4kb to 16kb on todays systems1. The program can then access memory
addresses relative to its assigned pages (called virtual memory), which the operating
system maps to physical memory addresses (often with hardware support).

But most programmers do not want to deal with pages of size 4kb to 16kb but
instead with custom sizes that can be smaller but also much bigger. Therefore, a memory
allocator is usually used, that will request memory from the operating system and manage
it. Thus calling malloc will cause the allocator to search its list of possible memory
locations for free space, while calling free will return a region in memory to the list
of free memory locations. There is a wide range of possible design choices for such an
allocator and what choices are best for performance depends on the precise programming
model. This is why Lean and Koka use their own memory allocator for the C backend
[LBM19].

While allocating is simple enough for the programmer, freeing is much more difficult.
Two main problems can occur here:

• When memory is freed too early and then accessed again, this will usually break
the program. Either the memory region can still be accessed in which case the

1On Unix you can find out the page size by running getconf PAGE SIZE.

6

t1: t2:x y zv

heap

stacks

Figure 2.1: An allocator-managed heap used by two threads t1, t2

relevant data are likely to have been overwritten already with data used anywhere
in the program. Or the allocator has returned the page to the operating system in
which case the virtual address can not be mapped to a physical address causing a
segmentation fault (SEGFAULT).

• When memory is freed way too late or never, this is called a space leak. This means
that the operating system has assigned the program some memory which it can not
access anymore because the allocator still has this memory region marked as used.
While this can be acceptable sometimes if the amount of leaked space is small or
the program runs only for a short time, it often carries a significant performance
penalty: in the best case this is just caused by the additional overhead of asking
the operating system for more memory. In the worst case, the computer may run
out of RAM and proceed to swap some memory out to the disk which is several
magnitudes slower.

The reason one of those two problems occurs is usually because data is shared between
different parts of the program. The programmer might free the data even though it will
later be used elsewhere or not free it under the mistaken assumption that it will be freed
by some other procedure. This is best illustrated by thinking of the objects in memory
as a graph: Each object forms a node and there is a directed edge from node a to node
b if object a contains a reference to object b. The only objects that have no incoming
edges in this graph are those stored in variables and dead, unused objects. Memory
management would be easy if this graph was a forest of arborescences: Then, whenever a
variable is last used, we could free the object it references and all its descendants.

But the graph is almost never a forest for three reasons:

• Several variables may refer to the same objects, either directly or through some
descendants (see the tree referred to by both y and v in 2.1). This may happen
when datastructures are shared between program parts that cooperate via this
datastructure, i.e. a producer thread writing results into a queue where they are

7

read by a consumer thread. A further case where this happens is when looking up
or inserting into a data structure that will be used later on: A variable points to
the root of the datastructure while we will use another one to traverse it.

• There may be directed cycles in the graph. Imperative datastructures like graphs,
doubly linked lists and binary search trees are often designed in such a way: See
the doubly linked list of x in 2.1.

• There may be undirected cycles in the graph, like the diamond of z in 2.1. This can
happen when some data is used at many places in a program (e.g. command line
options that are immutable and stored in several places) or for performance reasons.
A classic example of this are automatic theorem provers, which rewrite terms and
share common subterms. Disallowing sharing would lead to an exponential increase
in memory usage [SHM20].

A way to deal with the first reasons is by clarifying the ownership of objects. One
of the incoming edges will get the ownership of the object and all the other incoming
edges will borrow from that edge. Then we will free the object only when the object from
which the owning edge started is freed. This often has to be applied by a programmer,
since no borrowing edge may remain when the object is freed; else we might get a use-
after-free error. But sometimes a compiler can do this: later we will see how traversals of
datastructures can be borrowing by default.

A way to deal with the last two reason is by identifying the directed and undirected
cycles in the graph. This requires deep knowledge about the behavior of the program
and can thus only be done by the programmers – with significant time investment. Then
custom logic can be written that frees these cycles and proxy objects can be introduced
to stand for these cycles. In the terminology of our graph, we collapse these cycles and
obtain a cycle-free graph that can be handled by more simple memory-management
techniques. That is the approach usually taken by C and C++ programmers and we will
describe it in more detail now.

2.1 Manual memory management & RAII

The C programming language gives the programmer access to the low-level facilities
described in the last section, but almost no other tools. It is possible to group some bytes
together in memory by a struct declaration and the size of this struct can be queried
with sizeof. For example, to create an array of n complex numbers we could write:

typedef struct complex_s {
int a; /* real */
int b; /* imaginary */

} complex_t;

void foo() {

8

...
complex_t *cs = (complex_t*) malloc(sizeof(complex_t) * n);
...
free(cs);

};

This can feel liberating: Since C avoids the performance penalties associated with
more automatic forms of garbage collection, it will perform extremely well in the hands
of a competent programmer. More importantly, it is possible to observe and control
the latencies introduced by calls to malloc and free, which is important for realtime
applications like audio engines or games.

But it is also difficult to free all memory correctly and as such space leaks are not
uncommon. Furthermore, a program may leak memory only in certain code paths (for
example when an exception is thrown), which makes leaks hard to detect. And, somewhat
surprisingly, an automatic memory management system can actually be faster than the
free-logic written by a programmer if the programmer is not careful to free values shortly
after they are last used [HB05].

In order to make memory management easier for programmers while essentially
keeping the same trade-offs as C, C++ introduced the RAII paradigm, short for resource
acquisition is initialization. The idea is that resources should be bound to an object of
a class, which acquires the resource in its constructor and releases it in its destructor.
When the constructor is called, an object is placed on the stack and once the program
reaches the end of the current scope, the destructor of said object is called.

By using a memory region or other objects as the resource, this becomes an easy way
to automatically insert the necessary calls to free. To reference our previous example:

class Complex {
int a; // real
int b; // imaginary

};

void foo() {
...
std::vector<Complex> vec(n);
...
bar();
// vec freed automatically

}

However, notice how C++ compilers can not call the destructor when the object is last
used, but only when it goes out of the lexical scope. As a result, memory allocated this
way will stay alive for longer than necessary. Also, this can block tail call optimization
from happening: While C++ compilers will not use a new stack frame for function calls
that occur as the last instruction of a function, they will use one for the call to bar in

9

the function foo above. In order to achieve better code, it is therefore necessary to give
a new lexical scope to vec:

void foo() {
...
{

std::vector<Complex> vec(n);
...
// vec freed automatically

}
bar();

}

The RAII model of C++ has many advantages: it will run at essentially the same
speed and latencies that manual memory management in C could achieve while being
less error-prone. Could we use this model for a functional programming language like
Koka? The answer appears to be no. An essential part of functional programming is
the decision to make all values immutable2. As a result, functional datastructures are
persistent : Their internal state will not change when an operation is called on them;
instead these operations will return a modified copy that shares part of the internal state
of the old datastructure. This is quite convenient for programmers since it is always
possible to reason about a given value locally: it is not possible for a different thread or
function to modify it. This can even be good for performance. For example:

set.insert(x);
foo(set);
set.remove(x);

can (for a persistent datastructure) be written as:

auto set1 = set.insert(x);
foo(set1);
// 'set' unchanged

thus saving the remove operation. But to make persistent datastructures work well,
it is crucial that the internal state is shared. To illustrate this, imagine an insertion into
a balanced binary search tree. While an imperative algorithm could modify the tree
in place, a functional algorithm doesn’t have this luxury as the old tree is immutable.
Without sharing, an insertion must therefore use O(n) time to copy the entire tree. With
sharing, it is enough to create new nodes for the spine, the path that was taken to the
new element in the tree, and the rebalanced nodes. Since all the other parts of the tree
are shared with the old version, this insertion takes O(log n) time as desired.

2In Koka there are some exceptions to this rule, but they are not often used.

10

Nonetheless, some research has considered non-sharing memory management tech-
niques for functional programming languages. Based on linear logic [Wad90] these can
insert free-statements at the correct position and interface well with mutating, imper-
ative algorithms [Carp21]. But in the context of this thesis we want to use persistent
datastructures and thus need a more powerful version of memory management. We will
first take a look at the predominant method of automatic memory management: tracing
garbage collectors. Then we will investigate an alternative design, reference counting, in
more detail.

2.2 Tracing garbage collectors

The idea behind tracing garbage collectors (GC) [McC60] is simple: An object is dead
if it can not be used by the program anymore, in other words, if there is no path from
any variable to this object in the memory graph. Thus, we can from time to time walk
through memory starting with the current variables of the program, mark all objects
that can be reached this way and then sweep through memory again linearly and free all
the unmarked objects and delete the marks. Of course, a running program might change
the memory graph and so a naive implementation of this needs to stop the program (a
so-called stop-the-world collector). This requires no help from the programmer and will
prevent all space leaks; but it is slow and every invocation of this procedure will lead
to latencies, called GC pauses. These latencies will be relatively unpredictable because
the garbage collector has to rely on heuristics on when to run: running too often will
slow the program down unnecessarily while running too infrequently will lead to much
memory lying around unused. Thankfully, there are some strategies that improve on a
naive implementation:

A concurrent garbage collector can avoid to stop the world by using write barriers on
the objects it is marking. This makes garbage collection itself slower, but since the GC
can run on a different processor core, the program does not need to be stopped and can
run with almost the same speed as before.

A generational tracing garbage collector ([LH83], [Moo84], [Ung84]) partitions the
space of objects into several generations: Objects that have been allocated after the last
GC phase and objects that have been live since a few phases. Heuristically, it is much
more likely that newly created objects become unused than that old objects become
unused. It is thus possible to run phases at different intervals for the different generations,
which significantly reduces the GC pauses.

Finally, a compacting garbage collector [HW67] will also move the objects after
sweeping the memory to close any free spaces in memory. This can even lead to better
behavior than possible with manual memory management, since there it can happen that
the space becomes fragmented with many free spaces that are too small to be used for new
allocations. A compacting garbage collector will move the memory such that these spaces
are filled and thus it can use a much simpler version of malloc and free than a C
program: there is no need to track free spaces in memory and instead one can just assign
each allocated object the next space in memory (called arena allocation). Unfortunately,

11

since the existing memory needs to be moved for this to work, this implementation of
GC usually needs to stop the world.

Due to the simplicity for programmers and the remarkable optimizations outlined
above this is currently the dominant paradigm of memory management used by imperative
languages such as Java, C# and JavaScript (on V8) and functional programming languages
such as OCaml and Haskell.

2.3 Reference counting

Reference counting was first implemented in Lisp [Col60] as a simple technique for keeping
track of references. Reference counting stores an integer for every allocated object that
denotes the number of references that point to this object. The integer is updated
by the runtime and if it drops to zero, the object can be freed. This technique was
quite popular for a while and languages like Objective-C, Swift and Python use it today.
In general, reference counted programs will use significantly less memory than tracing
garbage collected ones: it shows similar behavior as the RAII model of C++ while being
more convenient.

By definition, reference counting can not clean up directed cycles between objects:
The incoming edges of the cycle will keep the reference counts of the involved objects
at at least one and so they (and any memory they reference) can not be cleaned up.
Objective-C and Swift solve this problem by requiring the programmer to mark some
pointers as weak such that they do not increase or decrease the reference counts. Python
employs a separate tracing garbage collector to remove cycles. In (strict,) pure functional
programming on the other hand it is impossible to create cycles and so Koka does not
provide any further mechanism to deal with this3. We will discuss cycle-free datastructures
in more detail in section 4.3.

Most implementations of reference counting decrement the reference counts only
at the end of the current scope and not at the last use of an variable. This is easiest
in practice, since it does not require special support for exceptions (we discuss this in
more detail in section 3.4). For example, C++’s shared ptr will decrement when
the destructor is called at the end of the scope. Rust’s RC<T> and Swift also show
this behavior [Gal16]. But using the Perceus algorithm, Koka can generate reference
count decrements precisely after the last use of a variable which can reduce the memory
consumption drastically. We discuss this technique in detail in chapter 5.

Unfortunately, dup can not always be implemented as a simple add instruction. If
the object can be accessed from several threads this can very easily lead to race conditions:
Assume two threads both try to increase the reference count at the same time: read the
current reference, add one to it and write it back. If the threads race the reference count
would only be increased by one after this procedure and it is thus possible that the object

3In lazy functional programming languages (like Haskell) cycles can be created through a technique
called tying the knot. In Koka, mutable references can be used to create cycles: these need to be broken
up by the programmer.

12

is freed to early! Therefore, the reference counts need to stored as atomics when objects
are thread-shared.

In imperative programming languages it is often not clear when an object is thread-
shared or not. As a result, reference counts are often implemented as atomics by default at
significant performance expense. There are several techniques to mitigate this: Deferred
reference counting [DB76] keeps the values only referenced by variables in a special
zero-count-table and tries to free them periodically. All other reference counts then only
count the references to the cell from another cell (and not those from variables). This
removes many reference count instructions but can lead to significantly higher memory
usage. Alternatively one can use two reference counts: A non-atomic one for the ‘owner’
thread where the value was created and an atomic one for all other threads [CST18].
This biased reference counting works particularly well if most values are only used on
one thread. Koka uses another technique first described for Lean [Ud19]: Any value is
non-thread-shared by default and only a special operation to move this value to a new
thread will make it thread-shared. This operation will then visit all the cells it references,
set a flag at each cell and store the reference count in an atomic value in the same place.

Figure 2.2: Benchmark per-
formance of Lean vs the case
where all reference counts are
atomic. [Ud19]

Atomic operations are usually quite fast, provided
that they are uncontended : the most common scenario
where only one thread accesses the atomic at a time. As
can be seen in figure 2.2, on modern Intel hardware Lean
will incur a performance penalty of 20% to 130% when
every single object is thread-shared (but only one thread
is used, so all atomics are uncontended).

In this thesis we will describe another technique for
reducing the cost of the reference count instructions:
borrowed values are kept live by some other variable.
This presents a form of space-safe deferred reference
counting: We can avoid some unnecessary reference count
instructions while obtaining better control over when
values are freed.

2.4 A note on memory ordering

Modern CPUs often execute several statements at the
same time and may change the order in which they access
memory as long as this is not visible to the programmer
in the same thread. Crucially, this need not hold for
multi-threaded programs. This can lead to unexpected errors since CPUs show different
behaviour: Intel X86 CPUs may only reorder loads with earlier stores to different locations
[Int15], while ARM CPUs may reorder any loads and stores [Arm21]. Since atomics are
often used to provide synchronization between different threads they can provide different
guarantees regarding the ordering of instructions [cpp21]. When marked as relaxed
they impose no constraints on the reordering of instructions which is the fastest option,

13

but may also prove counter-intuitive. For example, in Koka it is common that a parent
value is dropped directly after a value it refers to (its child) is dupped. But if this is
reordered and another thread drops the last reference to the parent value then the child
may be freed before the dup is executed! Marked as acquire atomics guarantee that
no later (atomic or non-atomic) loads will be moved before the atomic load. Similarly, as
release they guarantee that no earlier (atomic or non-atomic) stores will be moved
after the atomic store. Finally, acq rel combines these two properties4.

Reference counts are usually implemented in imperative programming languages with
relaxed atomic increments for dups. Drops use a release operation to decrement the
counter and check if the value is unique. If so, it is necessary to acquire the value before
freeing. This ensures that all writes to the value are recorded before dropping it from a
thread and that all information (for example regarding child references) is up-to-date
while freeing [SBB21]. Since most Koka values are immutable5 it seems like the acquire
operation before freeing could be avoided. However, it is necessary to acquire so that the
children (and most importantly their reference counts) are synchronized. But it would
also be possible to avoid the release on the recursive drops on the children of a freed
value, since all the stores after the initial release will be on values unique to the current
thread (which we know since their reference count was one).

4The memory effects of a thread may also be propagated to other threads at different times leading
to program executions that can not be linearized. Atomics can avoid this when marked as sequentially
consistent (seq cst).

5Reuse analysis may mutate values in-place but only when they are unique (and thus only accessible
by one thread).

14

Chapter 3

A Short Tour of Koka

This thesis includes some code samples and we have chosen to write them in Koka,
since our implementation of borrowing was done for that language. Koka is a functional
programming language, which means that a typical Koka program will consist of some
functions that operate on immutable datastructures. Datastructures are described in
Koka by algebraic data types which can be thought of as a mixture of enums and structs.
We will introduce these in the next section by example.

3.1 Algebraic data types

Algebraic data types (ADTs for short) can be used to define an enumeration of values;
for example the type of booleans can be defined as an enum of two constructors: True
and False.

type bool
False
True

An ADT can also be used with a single constructor and some arguments to define a
struct. The arguments need to be given a explicit type, through the name : type
syntax:

type complex
Complex(real : int, imaginary : int)

Crucially, these two features can be combined: It is possible to define a type that
carries certain arguments only for some of its constructors. This is especially useful for
error messages: We can return a result if successful and a specific error message else.

type result
Success(result : int)
Error(msg : string)

15

This should be read as: ”A result is either a success with an integer or an error with
a message”. This behavior can be simulated in C by defining an enum for the constructor
tags ’Success’, ’Error’ and a union of an int and a string, which is why this
technique is also known as a tagged union. Unlike C, Koka maintains the invariant that
the tag Success will never occur together will the msg string and vice versa. This way,
it is possible to provide a match syntax:

match(compute-result())
Success(result) -> ...
Error(msg) -> ...

Unlike with a switch statement each of the branches of the match is independent from
the other and no fall-through happens. Unlike with a if statement, the compiler can
check at compile time that all possible scenarios are handled.

Another important difference to C is that ’msg’ and ’result’ are usually stored
as pointers and not directly in the constructor. This allows us to store values of unknown
size in constructors. For example, it is possible to parameterize a type over other types.
We can use this to create an abstract type for errors and then derive the result type
of above as an instance of this type:

type either<a, b>
Left(left : a)
Right(right : b)

alias result = either<int, string>

Furthermore, types can refer to themselves recursively. This can be used to create a
simple version of the natural numbers:

type nat
Zero
Successor(n : nat)

val two = Successor(Successor(Zero))

This definition may remind a mathematically inclined reader of Peanos axioms of
the natural numbers. In fact, the type theory that underlies Koka posits certain axioms
about types that make the above definition a model of the Peano arithmetic:

• Any value of a type must be created by one of the constructors. Thus if n : nat
then either n = Zero or there is some m : nat such that n = Successor(m).

• Constructors are injective. In other words, we have n = m if and only if Suc-
cessor(n) = Successor(m).

• Different constructors are not equal, so for no n : nat we have Zero = Suc-
cessor(n).

16

In this sense, the match syntax gives a simple induction scheme for algebraic data types:

match(n)
Zero -> ... // handle case n = 0
Successor(m) -> ... // handle case m -> m + 1 = n

For programmers it is often convenient to define a version of equality for some types
that doesn’t fulfill the above axioms. This is possible, however it should be stressed
that such a user-defined notion of equality does not change the above-used definitional
equality which describes which datatypes will be identical in memory.

We want to conclude this section by giving three ADTs that are common in functional
programming. The maybe type can be used to simulate NULL pointers in a safe way:

type maybe<a>
Nothing
Just(value : a)

The additional safety comes through the fact that the only way to access the value
contained in the Just constructor is by matching. However, when we match we also
have to handle the case of the Nothing constructor. Thus, unlike in, say, C we can not
forget to handle the NULL case.

ADTs are particularly elegant for datastructures that form a tree in memory (in the
sense introduced in the last chapter). Among these are single linked lists and binary
trees:

// The list [1,2,3] would be Cons(1, Cons(2, Cons(3, Nil)))
type list<a>

Nil
Cons(head : a, tail : list<a>)

type tree<a>
Tip
Bin(elem : a, left : tree<a>, right : tree<a>)

Notice how both recursive definitions define a base case: Nil and Tip. While in most
imperative languages this base case would be simulated by a null pointer, we need to be
explicit here. In fact, if we left it out every list or tree would need to have infinite size!

It is of course also possible in Koka to deal with datastructures that do not have a
tree structure in memory like double-linked lists or arrays, but we will largely ignore
these features in this thesis. Instead we will, in section 4.3, discuss a technique that
allows us to avoid using cyclic datastructures in some cases.

3.2 Functions on ADTs

Let us describe a few functions on ADTs to get used to the match statement. To extract
the first element (or head) of a list, we can write:

17

fun head(xs : list<a>) : maybe<a>
match(xs)

Cons(x, _) -> Just(x)
Nil -> Nothing

Here, the maybe<a> in the first line is the return type of the function. Notice how this
definition works for lists of any type of element: The compiler will instantiate a with the
correct type when we apply head on a list of integers, trees, etc..

Lets move on to more interesting functions that call themselves recursively. We start
by computing the length of a list:

fun length(xs : list<a>) : int
match(xs)

Cons(_, xx) -> 1 + length(xx)
Nil -> 0

Notice how this function gives precisely the inductive definition of the length of a list
while being completely safe from NULL pointer errors. Unfortunately, it is not terribly
fast: The runtime has to allocate a new stack frame for each recursive call.

However, we can do better. If the recursive function call is the last statement in a
branch this is called tail-recursion. Tail-recursion can be compiled into a goto by the
compiler and is therefore just as fast as an imperative for-loop.

fun length(xs : list<a>) : int
fun go(xs : list<a>, acc : int) : int

match(xs)
Cons(_, xx) -> go(xx, acc + 1)
Nil -> acc

go(xs, 0)

Here we have defined another function go (inside of length so that go can only be
called by it), which is tail-recursive. The strategy of carrying an accumulator acc with a
function so that the addition can be done before the function call is well-known and can
often be applied for other associative operations as well.

It is also possible to apply a similar optimization, when the recursive call is only
followed by a constructor application. We might expect a length function that returns
the ADT-version of natural numbers to not be tail-recursive:

fun length(xs : list<a>) : nat
match(xs)

Cons(_, xx) -> Successor(length(xx))
Nil -> Zero

While this function is clearly not tail-recursive, it is tail-recursive modulo a constructor
(TRMC) [FW75]. This suffices to compile this recursive call into a goto-statement and
so this version will also not allocate any stack frames. We will see further applications of
this technique in the next chapter.

18

3.3 Higher-order functions

The strength of functional programming comes from being able to use functions as
first-class objects. That means we can store functions in variables and pass them to other
functions. Let us thus define a last version of our length function:

fun foldl(xs : list<a>, acc : b, f : (b, a) -> b) : b
match(xs)

Cons(x,xx) -> foldl(xx, f(acc, x), f)
Nil -> acc

fun length(xs : list<a>) : int
foldl(xs, 0, fn(acc, x) -> acc + 1)

The foldl function folds a function from the left: It applies the given function to
the accumulator and the first element, then the new accumulator and the second element
and so forth until it reaches the end of the list. Due to its generality, we can easily use
it for other purposes: for example to compute the sum of the elements of a list or ask
whether a list of booleans contains only the value True:

fun sum(xs : list<int>) : int
foldl(xs, 0, fn(acc, x) -> acc + x)

fun all(xs : list<bool>) : bool
foldl(xs, True, fn(acc, x) -> acc && x)

In a similar spirit, we can also fold from right, but then we can not make use of
tail-recursion anymore:

fun foldr(xs : list<a>, acc : b, f : (a, b) -> b) : b
match(xs)

Cons(x, xx) -> f(x, foldr(xx, acc, f))
Nil -> acc

Let’s end our sequence of toy programs by considering how to change the elements of
a list. A first idea for, say, increasing each element of a list of integers by one might be:

fun incr-one(xs : list<int>) : list<int>
match(xs)

Cons(x,xx) -> Cons(x + 1, incr-one(xx))
Nil -> Nil

The reader may have expected some form of assignment operator to change the list
directly. Instead it appears that this definition is creating a new list! The reason for
that is that in functional programming all values are considered immutable, so it is
impossible to change the old list. Immutability is not necessary for either ADTs (as
Rust demonstrates) or higher-order functions (as, say, Python demonstrates), but it can

19

make the organization of larger programs nicer. Still, it comes at the inefficiency that we
potentially have to free a Cons while allocating a new one directly after. This is what
Sebastian Ullrich and Leonardo de Moura [Ud19] called the resurrection hypothesis : Data
will be freed shortly before it is allocated anew. We will discuss a compiler optimization
for this soon, but let us first generalize the definition of incr-one by using a fold:

fun incr-one(xs : list<int>) : list<int>
foldr(xs, Nil, fn(x, acc) -> Cons(x + 1, acc))

However, this definition is not tail-recursive (since foldr is not tail-recursive). The
reader may want to pause for a moment to consider why we can not use foldl (directly)
in this scenario. Also, this will obscure the fact that the resurrection hypothesis holds in
this case from the compiler. Instead we will thus consider a different generalization:

fun map(xs : list<a>, f : a -> b) : list
match(xs)

Cons(x,xx) -> Cons(f(x), map(xx,f))
Nil -> Nil

fun incr-one(xs : list<int>) : list<int>
map(xs, fn(x) -> x + 1)

Note how this definition of map can make use of TRMC again and is thus as fast as
a for-loop. Still, it has to construct a new list to return. Since functions such as map are
very commonly used, this puts a lot of pressure on the garbage collector. We will shortly
see how Koka can avoid these allocations when the list is not used anywhere else. But
before, we have to discuss reference counting in Koka.

3.4 Static reference count instructions

Koka can insert reference count instructions statically into a program using the Perceus
algorithm. This information is only used for compiling and can not be written directly
in a Koka program by the user — but we will do that anyway to make the subsequent
optimizations clearer. In other words, we work in a hypothetical version of Koka that
corresponds to the way the real Koka transforms a program.

We write dup for incrementing the reference count and drop for the operation that
- decrements the reference count if it is bigger than one
- and else, frees the object and call itself recursively on the fields of the object.
The map example then becomes:

fun map(xs : list<a>, f : a -> b) : list
match(xs)

Cons(x,xx) ->
dup(x); dup(xx); drop(xs); dup(f);
Cons(f(x), map(xx,f))

Nil -> drop(f); drop(xs); Nil

20

What happens here? It helps to think of the references that are passed around
explicitly: At the start of the function we have two references (xs and f). In the Cons
case we give variable names to the fields of the constructor and thus acquire two more
references (x and xx). For these two references we have to increase the counters so we
insert two dup statements. Then we do not need the reference to xs anymore so we get
rid of it. By convention, Koka will need a reference to a function to apply it and so we
dup f. Finally, the reference to x is passed to f and the references to f and xx to the
recursive call of map. We end up holding no more references. Similarly, in the Nil case
we will need neither f nor xs so we need to drop the references.

We describe Perceus in more detail in chapter 5. Here, we want to focus only on some
consequences. First, we drop values (like xs above) directly when they become unused.
An example from [Rei+21] illustrates how this can reduce the peak memory usage of a
program:

fun foo()
val xs = list(1,1000000) // create large list
val ys = incr-one(xs) // increment elements
print(ys)

Here, incr-one will drop the list xs as it mapping over it. Furthermore, it will
allocate the nodes of the list ys during the same process so that the program will only
need enough memory to hold one list of integers at a time. This stands in contrast to
memory management approaches that remove objects from memory based on lexical
scope (like Swifts reference counting [Gal16] or C++s RAII-based shared ptr) which
might only free xs after ys has already been fully allocated. Similarly, a tracing garbage
collector might not clean up xs in time unless it runs very frequently.

Second, we need to consider why this technique works at all. Consider the following
program:

fun foo()
val xs = ... // some object
...
bar() // may throw an exception
...
drop(xs)
...
baz() // may also throw an exception

When an exception occurs in a function and is not handled, most programming
languages unwind the stack (that is they free all objects on the stack and return to the
calling function). However, here depending on where the exception occurs xs either
needs to be freed or not. While this can be accounted for (eg. by setting a flag for xs on
the stack when it is dropped), it still presents a considerable complication. Thankfully
though, we do not have to worry about scenarios like these in Koka, because all side-effects

21

(reading files, printing to the console, exceptions, mutable variables and async/await)
are encapsulated by effects and compiled into regular, non-side-effecting code [PP03;
PP09; XL21]. This means that the control flow is linear : It can be fully represented in
the syntax of match-statements and recursive calls introduced in the last sections. In
particular, early exits (like longjmp) will be transformed into regular match statements.

Thirdly, since we drop objects as soon as they are not used anymore, we can find an
elegant solution to the problem posed by the resurrection hypothesis. We will discuss
this and related optimizations next.

3.5 Reuse analysis

Let us define a new instruction drop-reuse, which
- if the reference count is bigger than one, decrements it and returns a NULL pointer
- and else, calls drop on the fields of the object and returns the object.

The difference between this instruction and drop is just that this one will return the
object instead of freeing it. We can then use the space in memory of this object for a
new one. For the map example, we can write this like this:

fun map(xs : list<a>, f : a -> b) : list
match(xs)

Cons(x,xx) ->
dup(x); dup(xx);
val ru = drop-reuse(xs); dup(f);
ru@Cons(f(x), map(xx,f))

Nil -> drop(f); drop(xs); Nil

We have written ru@Cons to mean that Cons should be written into the memory cell
ru if possible. On the other hand, if ru is a NULL pointer, we will allocate a new cell for
Cons. This solves the problem posed by the resurrection hypothesis: Instead of freeing
an object and then allocating a similar one shortly after, we will simply reuse it.

In the most common case that the list we are mapping over is unique, the code above
behaves exactly like a mutating imperative algorithm: No new space will be allocated. If
the list is not unique, we will still create a copy of the list — which is then unique and
can be reused if we map over it again. If only part of the list is unique and, say, the last
half is shared the algorithm will adopt to this and mutate the first half in place while
constructing a copy of the last half.

For this it is not necessary that the reused constructor is the same as the one on
which the reuse token is applied: This can be done whenever the constructors have the
same size and number of arguments1. We will use this insight extensively in the next
chapter.

1To be more precise: the same number of arguments that are represented as pointers. Koka may store
values (eg. integers) directly in the object of the constructor.

22

3.6 Drop specialization

Unfortunately, dup and drop are not cheap instructions: among other things they
contain complex logic for dealing with thread-shared objects. Thus we want to consider
two optimizations that can decrease the number of these instructions. For the first we
observe what happens when we match on a unique value v:

- we call dup on the fields for which we defined variables.
- we drop all fields of v
- we free v
Here we duplicated work: We first dup’d some fields of v and then drop’d them

immediately afterwards. With drop specialization, we will instead replace the involved
dup and drop instructions by

if(is-unique(v))
then drop unused fields of v; free(v)
else dup used fields of v; drop(v)

Applied to our running example, the map function:

fun map(xs : list<a>, f : a -> b) : list
match(xs)

Cons(x,xx) ->
if(is-unique(xs))

then free(xs);
else dup(x); dup(xx); drop(xs);

dup(f);
Cons(f(x), map(xx,f))

Nil -> drop(f); drop(xs); Nil

We can also integrate this pattern with the reuse analysis described above:

let ru = if(is-unique(v))
then drop unused fields of v; &v
else dup used fields of v; drop(v); NULL

Remark 3.1. This example also appears in [Rei+21], but they present it differently: They
give a pseudo-code definition of drop as

fun drop(x)
if(is-unique(x))

then drop children of x; free(x)
else decref(x)

Here decref is a new instruction that only decreases the reference count while not
checking if the object needs to be freed. Drop specialization then just means inlining
drop and moving the dups on the children into the branches of the if-statement. Since
a dup-drop-pair cancels out, we arrive at the above formulation.

23

Unfortunately, this is not thread-safe: It is possible for the reference count not to be
unique during the check is-unique(x) (because another thread holds onto it) while
being unique at the call to decref(x) (because the other thread dropped it meanwhile).
It is possible to avoid this problem by defining decref in a thread-safe way (like Koka
does), but then one loses the analogy to inlining the drop function.

3.7 Borrowing

Our second technique for reducing the amount of reference count instructions (and the
main topic of this thesis) is best illustrated by a function that traverses a datastructure
that we expect to remain used afterwards. We shall illustrate it here with the length
function considered before:

fun length(xs : list<a>) : int
fun go(xs : list<a>, acc : int) : int

match(xs)
Cons(_, xx) ->

dup(xx); drop(xs); dup(acc);
go(xx, acc + 1)

Nil -> drop(xs); acc
go(xs, 0)

Let us consider the case where we compute the length of a list which we will still use
later. We then pass a new reference to the list to the length function, which will pass
it to the go function. Then go will recursively make a new reference of the next list
element, drop its current reference and call itself recursively on the new reference. In
effect, we will create new references and then drop them in the next recursive call – to
no lasting effect, similar to a telescope sum.

Note though that this is only a form of a telescope sum, if we hold on to a reference
of the list: Else the go function will deallocate the list elements as it traverses the list.
Our first step to removing the telescope sum is thus to require the callsite of go to hold
on to a reference, in other words, we mark the parameter xs as borrowed (ˆxs). The
length function then becomes:

fun length(xs : list<a>) : int
fun go(ˆxs : list<a>, acc : int) : int

match(xs)
Cons(_, xx) ->

dup(acc);
go(xx, acc + 1)

Nil -> acc
go(xs, 0)
drop(xs);

24

Borrowing has the potential to make a program 10% faster, as we will see later – but
it also has clear drawbacks: Since we remove the drops we can not use reuse analysis
with it (and reuse analysis is much more important for performance than borrowing).
Furthermore, we will not drop values as soon as possible. To illustrate this problem, let
us consider the peak memory usage again:

fun make-tree(xs)
match(xs)

Cons(x,xx) -> Bin(x, Tip, make-tree(xx))
Nil -> Tip

fun foo()
val xs = list(1,1000000) // create large list
val ys = make-tree(xs) // turn it into a tree
// drop(xs); if xs is borrowed
print(ys)

Here, one might want to make the xs of make-tree borrowed (and the inference of
[Ud19] would mark it as such). But then the peak heap usage of this program is twice
what it needs to be and we loose a core advantage of Perceus! We discuss this problem
in more detail in the last part of this thesis.

25

Chapter 4

Link-inverted datastructures

In this chapter we will discuss datastructures using link-inversion since these fit in
particularly well with the reuse analysis described in the last chapter. Link-inversion
is a technique to avoid extra stack-space for recursions that are too complicated to
be optimized away by tail-recursion-modulo-cons. Instead one modifies values on the
heap, which in functional programming would usually imply new allocations. But with
reuse analysis we can keep the elegance of the functional implementation while achieving
the same efficiency as mutating implementation. We will first discuss some different
approaches for deriving link-inverted algorithms and then propose new implementations
for various balanced binary trees that improve on commonly used functional versions of
these algorithms.

4.1 Binary trees

The binary-trees benchmark [Con21] is a commonly applied test for checking how efficient
the garbage collector of a programming language is. It is simple to implement: First
some binary trees with no shared subtrees of a given depth are allocated1.

type tree
Tip
Node(l : tree, r : tree)

fun make-rec(depth : int) : div tree
if depth > 0

then Node(make-rec(depth - 1), make-rec(depth - 1))
else Node(Tip, Tip)

Then we traverse these trees and count the number of nodes:

1Since Koka cannot determine if the function terminates, we have to add the div effect to its return
type. This can be safely ignored.

26

fun checkr(t : tree) : div int
match t

Node(l,r) -> l.checkr + r.checkr + 1
Tip -> 0

Both these definitions recurse twice, but Koka can optimize only one of the calls in
make-rec away using TRMC and none of the recursive calls to checkr. However, there
is a simple technique to transform the stack frames in both cases into heap allocations
[SF98]. First, we make the functions tail-recursive by taking the rest of the computation
and passing it to the first call as a callback function:

fun make-cps(depth : int, f : tree -> div tree) : div tree
if depth > 0

then make-cps(depth - 1, fn(t) {
make-cps(depth - 1, fn(t2) {

f(Node(t, t2)) }) })
else f(Node(Tip, Tip))

The function f stores the computation that should happen after the call to make-cps.
When we call the function we would supply for f the identity function. This technique
(called CPS-transform) can thus be applied to move memory allocations from the stack
to the heap: Instead of stack frames we allocate closures. But function closures are less
efficient than datatypes and most importantly can not be reused. We can replace the
closures by normal datatypes if we store the free variables: depth,f for the first closure
and t,f for the second closure. We then replace the function f by a reference (up) to
our datatype:

type builder
Top
BuildRight(depth : int, up : builder)
BuildNode(left : tree, up : builder)

Here, Top corresponds to the identity function, BuildRight to the first closure and
BuildNode to the second closure. This representation is called the defunctionalization
of make-cps. We then add another function make-up that takes the datatype that
represented a closure and executes the code that that closure used to execute.

fun make-down(depth : int, builder : builder) : div tree
if depth > 0

then make-down(depth - 1, BuildRight(depth - 1, builder))
else make-up(Node(Tip,Tip), builder)

fun make-up(t : tree, builder : builder) : div tree
match builder

BuildRight(depth, up)

27

-> make-down(depth, BuildNode(t, up))
BuildNode(l, up) -> make-up(Node(l, t), up)
Top -> t

This code is significantly more complex than the code we started out with, but it
has the advantage that it doesn’t use stack space. The recursive calls to make-up and
make-down are in tail position and can thus be replaced by jumps.2 Furthermore, it
doesn’t use more heapspace: In make-up the builder is either getting reused for a
BuildNode (in the first branch) or a Node (in the second branch). Only the space
allocated for the Top builder will be lost (and in practice, Koka represents Top as a form
of NULL pointer in memory).

We can apply the same transformation to the checkr function.

fun checkc(t : tree, f : int -> div int) : div int
match t

Node(l,r) -> checkc(l, fn(i) {
checkc(r, fn(i2) {

f(i + i2 + 1) }) })
Tip -> f(0)

However, we can obtain better code if we first apply the accumulator trick to reduce
the number of closures:

fun checkt(t : tree, acc : int) : div int
match t

Node(l,r) -> checkt(l, checkt(r, acc + 1))
Tip -> acc

fun checktc(t : tree, acc : int, f : int -> div int) : div int
match t

Node(l,r) -> checktc(r, acc + 1, fn(i) {
checktc(l, i, f) })

Tip -> f(acc)

Unlike checkc, the checktc function only allocates a single closure. This corres-
ponds to the tail-call optimization that can happen in the checkt function. We can
again replace the closures by a datatype.3

type visit
Done
NodeR(right : tree, v : visit)

2As of this writing, Koka does not optimize mutually recursive tailcalls and we perform the optimization
by hand. However, we expect Koka to acquire this optimization technique in the future.

3This example was contributed by Daan Leijen.

28

fun checkv(t : tree, v : visit, acc : int) : div int
match t

Node(l,r) -> checkv(l, NodeR(r,v), acc.inc)
Tip -> match v

NodeR(r,v') -> checkv(r, v', acc)
Done -> acc

Notice however, that the checkv function can only reuse the Node if the tree passed
to it is unique. In the binarytrees benchmark we consider this is always the case, but in
general this transformation might make code slower since it only moves the stack frames
onto the heap in the form of visit values (and memory management is generally slower
on the heap than on the stack).

binarytrees
0s

1s

2s

3s

1
.0
5
s

1
.0
4
s

1
.2
8
s

0
.9
4
s

2
.4
4
s
··
·6

.6
1
s

··
·2

1
.7
0
s

1
.0
3
s

0
.9
5
s

el
ap

se
d
ti
m
e

(l
ow

er
is
b
et
te
r)

Koka Koka, make-up Koka, visit (no acc)

Koka, visit OCaml Haskell

Swift Java C++

binarytrees
0x

1x

2x

3x

(4
7
7
m
b
)

0
.2
9
x

0
.8
7
x

1
.0
4
x

··
·4

.1
3
x

1
.0
0
x

re
la
ti
ve

rs
s
(l
ow

er
is
b
et
te
r)

Figure 4.1: Benchmark results for
binarytrees, Apple M1

In figure 4.1 we compare the performance of
our different implementations against the official
entries on the binarytrees benchmark. For the
C++ implementation we selected the best perform-
ing entry on our system; keep in mind that the
submitted programs where not optimized for the
M1 processor. However, these results show that
Koka works quite well and is among the fastest
programming languages. Koka uses significantly
more memory than other implementations due to
the chosen parallelization strategy.

While using the checkv function makes the
program faster, the make-up function is com-
parable to the make-rec function. We conjec-
ture that this is because the TRMC optimization
that applies to make-rec does not transfer to
make-up: In make-rec we visit every node twice
(thanks to TRMC) but in make-cps and make-
up we visit every node three times. In contrast,
the introduction of tail-recursion in checkt trans-
ferred over effortlessly to checkv where we could
reduce the number of closures by one. In fact, if
we do not apply the accumulator trick, we obtain a
significantly worse performing program (see ‘visit
(no acc)’). This seems to be an interesting case for
studying TRMC further.

29

f

c

b

a

e

d

h

g i

Figure 4.2: A binary tree with link-inversion on the path to d

4.2 Link inversion and the Zipper

We saw above how the nodes of the tree could be reused for the constructors of a visit
datatype. In an imperative setting, we might want to perform this transformation
explicitly and replace the pointer to the left or right subtree in a Node by a pointer to
its parent. This technique is known as link-inversion since it inverts the pointer from
parent to child (see figure 4.2).

It was first discovered independently by Deutsch and by Schorr and Waite [SW67] in
the context of marking objects during garbage collection. Sobel and Friedman [SF98]
later extended it to any anamorphism (a recursive function building up a datastructure).
Reinking, Xie, de Moura and Leijen [Rei+21] describe how it interacts with reuse analysis.
However, applying this transformation to more complicated tree-based algorithms is quite
difficult and so it was often only applied to simple in-order traversals. But can it be used
for more practical matters, like balancing binary trees?

To answer this question, we abstract from the technique of the last section: Datatypes
like builder and visit above are known as zippers [Hue97]. In the general case (when
we can’t perform an optimization like the accumulator-trick), we can compute their
shape based only on the shape of the tree we recurse on without considering a concrete
algorithm. To state this description concisely we will denote datatypes algebraicly:

- The shape of a datatype is the sum of the shapes of its constructors
- The shape of a constructor is the product of the shapes of its fields. If a constructor

contains no fields, we write it as 1.
This definition is recursive if a field contains the datatype itself. In this case, we write

µx. . . . x The datatypes we have seen in section 3.1 have the following algebraic
representation:

30

bool ≡ 1 + 1

complex ≡ int · int

result ≡ int + string

either ≡ a+ b

nat ≡ µx. 1 + x

maybe ≡ 1 + a

list ≡ µx. 1 + a · x
tree (in 3.1) ≡ µx. 1 + a · x2

tree (in 4.1) ≡ µx. 1 + x2

This representation corresponds to the number of different elements (also called
inhabitants) that have a specific type (at least when this number is finite): Inhabitants
are constructed using exactly one constructor and may contain any selection of elements
from the fields.4 The zipper is now the datatype that replaces any x by a parent pointer
p and duplicates the terms such that it is clear which path we took. For example, we can
obtain the zipper for the binary tree above by writing µp. 1 + p · x+ x · p. If we want to
write an algorithm that builds up the tree from left to right like in make-rec we will
replace the x we have not visited yet by the data we need to build the tree. We saw this
in the last section: The builder zipper is µp. 1 + p · int + x · p.

Instead of keeping the parent pointer in the zipper directly, we could also use a list of
zipper values. The builder would then be:

type builder-list
BuildListRight(depth : int)
BuildListNode(left : tree)

The reader should convince themselves at this point that a list of builder-lists
is the same thing as a builder. However, we can also see this algebraicly:

µx. 1 + (int + tree) · x
= µx. 1 + int · x+ tree · x
= µx. 1 + x · int + tree · x
= µp. 1 + p · int + tree · p

As we saw above, the builder-list is just a specialized version of the general
zipper µp. 1 + p · x + x · p for trees x. Its listified version is then x + x. This version
can be computed by replacing any constructor with n recursive references (containing

4A function from a to b is written as ba in this framework, again alluding to the size of the set of the
inhabitants. Datatypes that do not contain functions are also called polynomial datatypes.

31

xn as a factor) by n copies of this constructor with n− 1 references to x each (n · xn−1).
During this procedure we will keep other fields (factors), but discard constructors that
contain no recursive references. In other words, the zipper of a type is just the list of its
derivative [McB01].

4.3 Avoiding cycles with Zippers

1 2 3 4

1 2 3 4

Figure 4.3: A doubly-linked list and
its zipper centered at 2

We have promised to revisit the issue of cyclic
datastructures and want to tackle it here. You may
have recognized the list type in the last chapter as
a single-linked list as opposed to a double-linked
list where every Cons node would also have a
pointer to its predecessor. Imperative programmers
use the latter design to be able to construct their
datastructures once and then move around freely in
them; climbing around in the web of pointers like a
spider searching for its prey. Functional programmers take a different view: They always
stay at the same point and it is the web that moves around them. For a double-linked
list the zipper is a pair of single linked lists: on the one side the elements to our right
and on the other side the elements to the left of us.

type zipper<a>
Empty
At(l : list<a>, here : a, r : list<a>)

fun move-right(xs : zipper<a>) : zipper<a>
match(xs)

Empty -> Empty
At(l, h, Nil) -> At(l, h, Nil)
At(l, h, Cons(h', r)) -> At(Cons(h, l), h', r)

This has the drawback that it is not possible to jump around in the structure: We have
to move to the position we want to see from the position we last visited. In particular,
we can not keep a pointer to the first element, change a few elements in the middle and
then return the first element without explicitly going back.5.

However, we can now work with one pointer less per list cell. Since otherwise the list
cells only contain one pointer to their element, this makes a big difference in memory
usage. In the next two sections we will apply the zipper as a visitor transformation to
trees to obtain versions of well-known balanced binary tree algorithms. Similarly to the
simple zipper, we will invert the pointers from parents to children along the search path
while going down and while going up balance and repair the inverted pointers. We will

5This seems to be one of the main problems when providing a purely functional implementation of
graphs such as algebraic graphs [Mok17]

32

see that these algorithms are significantly faster than the algorithms usually taught to
functional programmers and competitive with imperative implementations.

4.4 Splay trees

Splay trees [ST85] are self-balancing binary trees where the least recently accessed
element is splayed to the top of the tree (see figure 4.4). We will cover them here for
the elegance of our splay function that corresponds directly to the textbook definition
(unlike imperative implementations that are often much longer and more complicated).

alias elem = int

type tree
Node(left : tree, here : elem, right : tree)
Leaf

type zipper
Root
LeftChild(parent : elem, up : zipper, right : tree)
RightChild(parent : elem, up : zipper, left : tree)

For simplicity, we store integers as elements in our splay tree. Note how the con-
structors of the zipper have the same number of arguments as the splay tree. To insert
an element into the tree, we will first compare if the element should go into the left or
the right branch (we will use our tree as a multi-set and so we do not care if the element
is already contained in the tree). We then go down the chosen branch and create a zipper
that holds the other branch. Since the sizes match, reuse analysis can turn Nodes into
Left/RightChilds during insertion:

fun insert(v : elem, tree : tree)
fun go(tree, zipper)

match(tree)
Leaf -> splay(Leaf, v, Leaf, zipper)
Node(a, b, c) ->

if(v < b) then go(a, LeftChild(b, zipper, c))
else go(c, RightChild(b, zipper, a))

go(tree, Root)

Once we have reached the bottom of the tree, we go up the tree again and perform
the splay rotations. For the sake of brevity, we have chosen very short variable names,
but we invite the reader to check the individual cases against figure 4.4:

fun splay(e, f, g, zipper)
match(zipper)

33

Root

f

e g

f

e g

LeftChild of Root

h

if

e g

f

e h

g i

LeftChild of RightChild

d

c h

if

e g

f

d

c e

h

g i

LeftChild of LeftChild

j

kh

if

e g

f

h

j

ki

e

g

Figure 4.4: The first four cases of the splay function after accessing f. The variable
names were chosen to correspond to the ordering of the tree.

34

Root
-> Node(e, f, g)

LeftChild(h, Root, i)
-> Node(e, f, Node(g, h, i))

LeftChild(h, RightChild(d,z,c), i)
-> splay(Node(c,d,e),f,Node(g,h,i),z)

LeftChild(h, LeftChild(j,z,k), i)
-> splay(e,f,Node(g,h,Node(i,j,k)),z)

RightChild(d, Root, c)
-> Node(Node(c, d, e), f, g)

RightChild(d, RightChild(b,z,a), c)
-> splay(Node(Node(a,b,c),d,e),f,g,z)

RightChild(d, LeftChild(h,z,i), c)
-> splay(Node(c,d,e),f,Node(g,h,i),z)

Splay trees perform well when similar elements are accessed closely after another:
On the first access, the first element and the elements surrounding it in the tree are
splayed to the top and are then quicker to access in later iterations. Splay trees can
do especially well as heaps if there are longer phases in which the smallest element
is extracted repeatedly as the smaller elements are close to the root in these phases.
Splaying the smallest element to the root can be done by a simpler access-min function
that only has to consider the ‘left child of left child’ and ‘left child of root’ cases:

fun access-min(tree)
fun go(c, d, e)

match(c)
Leaf -> Node(c, d, e)
Node(a, b, c) -> go(a, b, Node(c, d, e))

match(tree)
Leaf -> tree
Node(a, b, c) -> go(a, b, c)

To evaluate the performance of these splay trees, we compare them against standard
functional heap implementations [Oka99]. We compare the performance of heapsorting
a list of 10 million random integers, and of heapsorting a list of 10 million already
sorted integers (Figure 4.5). On random data, weight-balanced leftist heaps are best,
but they can not take advantage of ordering and thus show similar performance on
random and sorted data. Leftist heaps and Okasaki’s splay heaps strike a good balance
between performance on the two benchmarks with splay heaps being (unsurprisingly)
significantly faster on sorted data. The zipper-based splay trees from above are slightly
slower than Okasaki’s splay heaps at random data, but significantly faster on sorted data.
Pairing heaps and binomial heaps did not perform well at this task. The mergesort from
Haskell’s Data.List, ported to Koka, outperforms the heapsort even for the best heap
implementation.

35

Remark 4.1. When using a splay tree to implement a set (instead of a multi-set like
above), one can achieve a modest speedup by implementing the splay function differently.
When we find that the element is already contained in the tree, we would call splay(a,
b, c), but this discards a node that we then have to allocate again. We can avoid this
by passing e,f,g inside a type that has just one constructor with three fields. Similarly,
one should implement a special case in access-min for Node(Leaf, ,) so we don’t
have to allocate the root again if it is already the minimum element.

4.5 Red-black trees

random sorted
0x

1x

2x

3x

4x

4
.0
3
s

0
.1
s9
.2
9
s

9
.8
7
s

0
.7
4
s

9
.9
3
s

0
.4
8
s

1
1
.4
1
s

0
.2
3
s1
6
.5
1
s

0
.7
6
s

3
1
.3
2
s

re
la
ti
ve

ti
m
e
(l
ow

er
is

b
et
te
r)

Mergesort (comparison) Weight-biased leftist heap

Leftist heap Splay heap, Okasaki

Splay heap, Zipper Pairing heap

Binomial heap

Figure 4.5: Benchmark results for
heapsorts, Apple M1

Red-black trees [GS78] are balanced binary trees
where each node is marked as either red or black.
Then the tree maintains the invariants that every
path from the root to a leaf contains the same
number of black nodes and that no red node has
a red child. It follows from this that the longest
possible path in such a tree (where red and black
nodes alternate) can be at most twice as long as
the shortest possible path (with only black nodes),
thus the tree is balanced.

We can define the datatype for such a red-black
tree by defining a type of colors, a type of binary
trees that stores color information and its zipper.

alias elem = int

type color
R
B

type tree
Node(c : color, l : tree, e : elem, r : tree)
Leaf

type zipper
NodeR(c : color, l : tree, e : elem, z : zipper)
NodeL(c : color, z : zipper, e : elem, r : tree)
Done

For example, when we are at the node that
holds ‘6’ in figure 4.6 we could describe this by a
pair of a tree and a zipper:

(Node(B, Leaf, 6, Node(R, Leaf, 7, Leaf))
, NodeL(R, NodeR(B, a, 5, Done), 8, b))

36

5

8

6 9

7

3

42

a

b

Figure 4.6: A red-black tree. Black
nodes are drawn as squares, red
nodes as circles.

To insert a node into such a red-black tree we
will first find the correct position to insert our
current element x. For that we compare it to the
element stored in the top-most node and either go
into the left or right subtree. While walking down
one path in the tree this way we store the parent
nodes in the Zipper. Notice how both NodeR and
NodeL have the same size as Node so that this
works without any new allocations thanks to reuse
analysis.

fun ins(t : tree, k : elem, z : zipper) : tree
match t

Node(c, l, kx, r)
-> if k < kx then ins(l, k, NodeL(c, z, kx, r))

elif k > kx then ins(r, k, NodeR(c, l, kx, z))
else z.move-up(Node(c, l, kx, r))

Leaf -> z.balance-red(Leaf, k, Leaf)

If the element is already in the tree, we can move-up the tree without any balance
rotations. If we insert the element, we give it the color red and since its parent might
be red as well we have to balance the new tree. For this we inspect the parent and
grand-parent of the current node (using the zipper) and perform rotations such that all
paths from the root to a leaf still have the same number of black nodes and the only red
node with possible a red parent is the node we rotated to the top of the tree. At the end
of the insertion, if the root of the tree is red, we can safely change its color to black.

fun move-up(z : zipper, t : tree)
match z

NodeR(c, l, k, z1) -> z1.move-up(Node(c, l, k, t))
NodeL(c, z1, k, r) -> z1.move-up(Node(c, t, k, r))
Done -> t

fun balance-red(z : zipper, l : tree, k : elem, r : tree)
match z

NodeR(B, l1, k1, z1) ->
z1.move-up(Node(B, l1, k1, Node(R, l, k, r)))

NodeL(B, z1, k1, r1) ->
z1.move-up(Node(B, Node(R, l, k, r), k1, r1))

NodeR(R, l1, k1, z1) -> match z1
NodeR(_, l2, k2, z2) ->
z2.balance-red(Node(B, l2, k2, l1), k1, Node(B, l, k, r))
NodeL(_, z2, k2, r2) ->
z2.balance-red(Node(B, l1, k1, l), k, Node(B, r, k2, r2))

37

Done -> Node(B, l1, k1, Node(R, l, k, r))
NodeL(R, z1, k1, r1) -> match z1

NodeR(_, l2, k2, z2) ->
z2.balance-red(Node(B, l2, k2, l), k, Node(B, r, k1, r1))
NodeL(_, z2, k2, r2) ->
z2.balance-red(Node(B, l, k, r), k1, Node(B, r1, k2, r2))
Done -> Node(B, Node(R, l, k,r), k1, r1)

Done -> Node(B, l, k, r)

Since NodeR and NodeL have the same size as Node we will allocate no new memory
during this procedure – at least if the given tree is unique. If it is not unique we will only
allocate new memory for the zipper which is then unique so that balance-red can
always reuse. Furthermore balance-red and ins are tail-recursive so that they can be
compiled to fast imperative loops. Therefore version is not only shorter but also almost as
fast as an imperative implementation (like [Cor+09]) – except that it can not terminate
rebalancing early like imperative implementations can: Most imperative implementations
add an extra parent pointer to every node and can then implement move-up as a direct
jump to the root of the tree. This can significantly improve performance but it is not
possible with link-inversion since we have to invert all the inverted links again.

Remark 4.2. The insert function can be modified to carry the element kx in the recursive
call and check for equality only once the bottom of the tree is reached. This can reduce
the number of times the equality operator is used from O(log(n)) to O(1) and significantly
improve performance. Similarly it is possible to improve lookup and deletion functions
using this technique.

4.6 B-trees and constructor padding

In the last two sections we saw the importance of equally-sized constructors. But in many
cases these will not occur naturally. Does it make sense then to fill smaller constructors
with NULL pointers so that we can make use of reuse analysis at the cost of using slightly
more memory?

We want to investigate this question at the example of B-trees of minimum degree t =
2, also called 2-3-4 trees. We will present only a small fragment of such an implementation
to show the relevant pieces. When a node in a B-tree becomes too big it needs to be
split into two nodes: the try-split function below shows this operation.

type tree
Root0
Node1(a:tree, b:elem, c:tree)
Node2(a:tree, b:elem, c:tree, d:elem, e:tree)
Node3(a:tree, b:elem, c:tree, d:elem, e:tree, f:elem, g:tree)
Leaf1(a : elem)
Leaf2(a : elem, b : elem)

38

Leaf3(a : elem, b : elem, c : elem)

type split
NoSplit
Split(l : tree, a : elem, r : tree)

fun try-split(tree)
match(tree)

Node3(a, b, c, d, e, f, g)
-> Split(Node1(a, b, c), d, Node1(e, f, g))

Leaf3(a, b, c) -> Split(Leaf1(a), b, Leaf1(c))
tree -> NoSplit

As can be seen above, the try-split can use reuse analysis only to reuse the Leaf3
node for the Split node. One may wonder if it would help if all nodes of a B-tree
had the same size (as usual in imperative implementations). For this we will pad the
constructors with integers that we will all set to 0. The try-split function can then
reuse the old node for one of the new nodes.

type tree
Root0(a:int, b:int, c:int, d:int, e:int, f:int, g:int)
Node1(a:tree, b:elem, c:tree, d:int, e:int, f:int, g:int)
Node2(a:tree, b:elem, c:tree, d:elem, e:tree, f:int, g:int)
Node3(a:tree, b:elem, c:tree, d:elem, e:tree, f:elem, g:tree)
Leaf1(a:elem, b:int, c:int, d:int, e:int, f:int, g:int)
Leaf2(a:elem, b:elem, c:int, d:int, e:int, f:int, g:int)
Leaf3(a:elem, b:elem, c:elem, d:int, e:int, f:int, g:int)

fun try-split(tree)
match(tree)

Node3(a, b, c, d, e, f, g)
-> Split(Node1(a,b,c,0,0,0,0), d, Node1(e,f,g,0,0,0,0))

Leaf3(a, b, c, _, _, _, _)
-> Split(Leaf1(a,0,0,0,0,0,0), b, Leaf1(c,0,0,0,0,0,0))

_ -> NoSplit

We can optimize this version slightly: In Koka an int can have an arbitrary size and
thus needs to be reference counted. We can therefore reuse the integers we already have
for the integer slots of the new constructors and thus save us some drop operations:

fun try-split(tree)
match(tree)

Node3(a, b, c, d, e, f, g)
-> Split(Node1(a,b,c,0,0,0,0), d, Node1(e,f,g,0,0,0,0))

39

Leaf3(a, b, c, d, e, f, g)
-> Split(Leaf1(a,0,0,d,e,f,g), b, Leaf1(c,0,0,0,0,0,0))

_ -> NoSplit

However, padding everything turns out to be much slower; unsurprisingly since we
now use significantly more memory. A simple optimization would be to separate the
padding by Leafs and Nodes. This will remove some opportunities for reuse analysis,
but since the Leafs outnumber the Nodes this can shave off at least a quarter of the
memory usage of the full padding above.

type tree
Root0
Node1(a:tree, b:elem, c:tree, d:int, e:int, f:int, g:int)
Node2(a:tree, b:elem, c:tree, d:elem, e:tree, f:int, g:int)
Node3(a:tree, b:elem, c:tree, d:elem, e:tree, f:elem, g:tree)
Leaf1(a : elem, b : int, c : int)
Leaf2(a : elem, b : elem, c : int)
Leaf3(a : elem, b : elem, c : elem)

4.7 Conclusion

Link inversion can also be applied to more complex tree-algorithms and zippers can
make these algorithms particularly elegant to describe. While they are not the right
choice in each situation they provide competitive performance and can sometimes provide
significant speedups. However, this area can still benefit from more research. For example,
the zippers we considered above are unique at runtime by construction and so the reuse
in the balance functions always succeeds. But Koka can not detect this and so needs to
check at runtime whether the reuse succeeded before it can use the memory. Removing
these checks manually provided further speedups of around 10%.

Reuse analysis happens very late in the compiler: After Perceus inserted reference
count instructions, which itself only happens most other optimizations (e.g. inlining,
specialization, removing effects). This is very important, since new reuse opportunities
may arise due to optimizations, but it also makes it difficult to reason about what is
reused by what without inspecting the intermediate C code Koka produces. It would be
beneficial to give better feedback to the user, especially as some algorithms like those
outlined above crucially depend on reuse analysis working well.

40

Chapter 5

Calculi for program transformations

In order to reason about program transformations, we need an abstract model in which we
can express these. The most common model in computer science for discussing programs
is the turing machine - but it is so far removed from programming languages that it is
all but impossible to use it for our purpose. Thankfully, Alonzo Church developed the
lambda calculus in the 1930s which is as strong as the turing machine but corresponds
more closely to programs as they are written in functional programming languages1. In
the next section, we will introduce this theory and show how it relates to Koka.

5.1 Computation

The lambda calculus can be described very quickly: A term is either a variable x, an
application (MN) where M,N are itself terms or a lambda abstraction (λx,N) where x
is a variable and N a term. We will sometimes omit the brackets for clarity; application
associates to the right (abc means (ab)c). This can be compactly written:

e := x | e e | λx, e

Here λx,N intuitively corresponds to an anonymous function with one argument and
application corresponds to function application. We say a variable x is bound if it is
contained in some subterm (λx,N) and else we say it is free. We write N [x := M] for
the term which is equal to N except that every free occurrence of x is replaced by M
(and all variables are appropriately renamed such that free variables in M are not bound
in the new term). Then we can reduce a term by “calling” the anonymous functions: We
replace a subterm (λx,N)M by N [x := M].

This procedure is called β-reduction and applying it as long as possible yields the
β-normal form. Interestingly, it does not matter in which order β-reductions are applied
if several are possible at the same time and all of them terminate: this is known as the
Church-Rosser theorem. Thus, we have a basis for computation: If we want to know if a
program evaluates to a certain value we can simply β-reduce it and check if we obtain

1In fact, functional programming was largely developed as an extension of the lambda calculus.

41

the value we expect. In some cases, it will be necessary to rename bound variables (for
example λx, x should be equal to λy, y), which we will call α-conversion.

We can write this informal description down in a formal calculus. For this we will
use sequents. A sequent rule consists of several preconditions and a conclusion. If the
preconditions can be shown to hold, then also the conclusion holds.

precondition precondition precondition . . .
rule name

conclusion

We denote β-reduction by N M and then the β-reduction rule reads:

β-reduce
(λx,N)M N [x := M]

However, the rule above can only be applied at the top level of a term – but we
want to apply it anywhere in a term. We thus need to add three more rules that take a
reduction as a precondition and insert it into the syntactical constructs above.

var
x x

N N ′ M M ′ app
NM N ′M ′

N N ′
lam

λx,N λx,N ′

Here, the var rule is necessary because otherwise there would be no way to derive
N N for any N . But that is necessary because otherwise we couldn’t apply the app
rule if it is possible to β-reduce M but not N .

Most programmers will not be surprised that function applications are important
for computation; but they may ask where the datatypes are in this calculus. We will
first present a simple example with booleans to illustrate the principle and then show
how arbitrary algebraic data types can be represented in this calculus. We will write
λx1 . . . xn, N for λx1, . . . λxn, N and encode ‘true’ as λx y, x and ‘false’ as λx y, y. Then
the function ‘and’ can be written as:

λb1 b2 x y, b1 (b2 x y) y

We can refer to the definitions above by name by wrapping our term N in, say,
(λtrue,N)(λx y, x). Since this is common, we usually write this as val true = λx y, x; N .

From this example we can see that it is possible to represent an enumeration data
type of n possible values as a function of n parameters: it represents the i-th possible
value iff it returns the i-th parameter. If a function accepts an enumeration datatype
and has n possible behaviors for each of the n possible values of the enumeration, these
become the n arguments.

What about constructors that store some values? These can be represented by passing
these values to the parameter of the function. For example, a pair of a, b might be written
as λx, x a b. Of course, this can be combined with an enumeration as we have seen with
the ‘list’ datatype:

Cons(a, xs): λc n, c a xs

Nil: λc n, n

42

We can even write a small ‘map’ function:

val mmap = λmap f list, list (λa xs c n, c (f a) (mapmap f xs)) (λc n, n);

val map = mmapmmap;

Programmers use this style only infrequently in the real world since using explicit
constructors leads to code that is both faster and easier to understand — but still this
technique is sometimes useful and then called continuation passing style. In this way all
algebraic data types introduced in chapter 3 can be represented. This is the magic of the
lambda calculus: It is functions all the way down.

e := x | e e | λx, e | C e1 . . . en

| match e { pi → ei }
| val x = e; e

p := C b1 . . . bn

b := x |

Figure 5.1: Abstract syntax of Koka

Now that we have established the general prin-
ciple however, we can safely use some more syntax
to make our intent clearer. In 5.1 we introduce
a ‘match’ syntax that allows us to match on con-
structors by name as in Koka. Unlike in Koka we
will not allow nested patterns – instead a pattern
is just a constructor where we can bind the fields
to variables or let them be unbound by writing an
underscore.

v := x | λx, e | C v1 . . . vn

E := � | E e | v E | val x = E; e

| match E {pi → ei}
| C v1 . . .E . . . en

e e′
eval

E[e] E[e′]

Figure 5.2: Evaluation of 5.1

However, now that our syntax is so much richer,
it would be very verbose to write down all the differ-
ent reduction rules explicitly. We will therefore use
a short-hand known as evaluation contexts, which
allow us to specify the reduction rules separately
and then use a combined rule to allow the reduc-
tion rules to match anywhere in the expression.
In 5.2 we first specify values v that shouldn’t be
reduced further. Then we specify the evaluation
context E as an expression with hole � in it and
give an eval rule. If an expression e reduces to e′

then the eval rule tells us that we can plug that reduction into the term at an arbitrary
position. But the evaluation context also specifies an order of evaluation: For example
the i-th entry of a constructor application can be evaluated only once the entries 1 to
i− 1 have been evaluated. We can now give the reduction rules for this syntax:

app
(λx, e) v e[x := v]

bind
val x = v; e e[x := v]

pi = C x1 . . . xn for exactly one i
match

match (C v1 . . . vn) {pi → ei} ei[x1 := v1 . . . xn := vn]

43

With this new syntax we can write the ‘map’ function as:

val mmap = λmap f list, match list

Cons a xs→ Cons (f a) (map map f xs))

Nil → Nil;

val map = mmap mmap;

Exercise 5.1 (Nontermination). Turing machines can express non-terminating programs
and so can the lambda calculus. Show that β-reducing (λx, x x)(λx, x x) will never
terminate. Can you give a term such that β-reduction will increase the size of the term
each time it is applied? Can you give a term where β-reduction terminates if we choose
the subterms to apply it to in some order, but where it doesn’t terminate if we choose
them in another order?

Exercise 5.2 (Booleans). Define an ‘or’ function in pure lambda calculus and show that
‘true or false = true’ with the sequent calculus.

Exercise 5.3 (Evaluation context). Why is there no rule ‘val x = v; E’ or ‘λx, E’ in 5.2?

Exercise 5.4 (Implementation). Consider how you could write the evaluation procedure
for 5.1 in Koka. Write down the ADTs that describe the syntax and implement the eval
rule. Is the description of the evaluation order ambiguous?

5.2 A-normalization

Many optimization techniques for functional programming languages can be derived
directly from the calculus defined above. For example, inlining a function call corresponds
to applying the bind rule selectively: We replace only one occurrence of the function
symbol x by the definition v. Similarly, executing a computation on a known constant
(constant folding) can be done by applying the app and match rules.

We will describe one such optimization in detail because it is an important difference
between Lean and Koka and will give us a new technique for evaluation contexts. A-
normalization [Fla+93] transforms a program into A-normal form which exposes more
opportunities for optimization. One example of A-normal form in action:

match (val x = . . . ; A x)

A x→ . . .

B → . . .

 val x = . . . ;

match (A x)

A x→ . . .

B → . . .

44

While the left-hand side might stay unoptimized by a simple compiler, the right hand
side is a clear opportunity for constant folding: The compiler can choose the first branch
at compile time and thus avoid some runtime overhead. While a programmer would be
unlikely to write code like the piece shown on the left hand side explicitly, this situation
can occur due to inlining (in fact, one of the main reasons for inlining is exposing new
transformations [JM02]).

A := � | A e | v A | val x = A; e

| match A {pi → ei}
| C v1 . . .A . . . en

Figure 5.3: The evaluation context of
A-normalization

We can describe A-normalization using eval-
uation contexts – but with a catch: this time we
will move and copy the term that the evaluation
context represents. In Figure 5.3 we give the
definition of the evaluation context A. For the
A-reductions given below we will assume that all
variable names in the program are unique and
that A 6= �.

A[val x = v; e] −→ val x = v; A[e]

A[match v {pi −→ ei}] −→ match v {pi −→ A[ei]}
A[v1 v2] −→ val t = v1 v2; A[t]

where A 6= A′[val z = �; e], t is a fresh variable

While A-normalization is quite powerful for optimizing programs, it will duplicate
code every time the evaluation context is used more than once in the rules above. Thus,
it can lead to an exponential increase in code size. One can avoid this either by only
performing the match normalization when code duplication is unlikely or impossible, or
by creating a new function for the term of the evaluation context (a join point [Mau+17]).
While Koka uses the first option, Lean uses the second.

5.3 Static reference count instructions

Koka inserts reference counting instructions using the Perceus algorithm [Rei+21]. They
split their description into three parts: The linear resource calculus λ1 gives a formal
specification of valid ways to place reference count instructions such that the resulting
program is sound: No value is freed before it is last used and in the end no dead memory
remains. This property is proved using a simplified model of the Heap. Finally, the
Perceus algorithm is given as a calculus that places dups and drops in a valid way such
that the resulting program does not hold on to memory longer than necessary.

The λ1 calculus uses the language we developed in 5.1. In part this is a practical
decision: match-syntax is easy to read and maps well to if-statements that any backend
will support. But it also has a theoretical reason: A lambda will need to capture all its
free variables since it might live longer than other references to its free variables. But
the syntactic sugar we have defined before uses lambdas that will be called only once

45

var
∆ | x ` x x

∆ | Γ, x ` e e′ x ∈ ∆,Γ
dup

∆ | Γ ` e dup x; e′

∆ | Γ ` e e′
drop

∆ | Γ, x ` e drop x; e′

∅ | Γ, x ` e e′ Γ = free variables of λx, e
lam

∆ | Γ ` λx, e λΓx, e′

∆,Γ2 | Γ1 ` e1 e′1 ∆ | Γ2 ` e2 e′2 app
∆ | Γ1,Γ2 ` e1 e2 e′1 e

′
2

x /∈ ∆,Γ1,Γ2 ∆,Γ2 | Γ1 ` e1 e′1 ∆ | Γ2, x ` e2 e′2
val

∆ | Γ1,Γ2 ` val x = e1; e2 val x = e′1; e′2

∆,Γ2 | Γ1 ` e e′ ∆ | Γ2, bv(pi) ` ei e′i
match

∆ | Γ1,Γ2 ` match e {pi → ei} match e′ {pi → e′i}

∆,Γi+1, . . . ,Γn | Γi ` ei e′i 1 ≤ i ≤ n
con

∆ | Γ1, . . . ,Γn ` C e1 . . . en C e′1 . . . e
′
n

Figure 5.4: The λ1 calculus

and we can generate better code for them if we know of this property. We will see an
example shortly.

Each transformation of the λ1 calculus is parameterized over two multi-sets of variables
∆ and Γ. The multi-set Γ contains all variables for which the expression holds a reference
and ∆ contains all variables for which we know that some other part of the program
holds a reference. Both are empty at the start. Any rule will then be of the form
∆ | Γ ` e e′. For the var rule we assume that we hold only a reference to this
variable (Γ = {x}) and some arbitrary ∆-environment. We can modify the multi-set Γ
with the dup and drop rules: As long as there is any reference to a variable in either Γ
or ∆ we can create a new one and we can always remove old references.

The lam rule introduces the conversion of lambda-expressions. Here we assume that
Γ is a set, namely the set of free variables of the lambda. We will then ”store” these
references in the lambda and denote this by λΓ. Since the lambda may live longer than
the references in the ∆-environment, we cannot use them for the expression inside the
lambda.

The app and val rules are very similar: We split the Γ-environment between two
different expressions. Since in our evaluation order (given in 5.2) we always consider first
e1 and then e2 we can add the references we assign to the Γ of the second expression to
the ∆ of the first expression. The similarity should not be surprising: We have seen that
val x = e1; e2 can also be written as (λx, e2) e1. But since we know that the thus created

46

H: x→ (N+, v)

E := � | E e | x E | val x = E; e

| C x1 . . . xi−1,E, ei+1 . . . en | match E {pi → ei}

H | e −→r H′ | e′
eval

H | E[e] −→r H′ | E[e′]

(lamr) H | (λysx, e) −→r H, f 7→1 λysx, e | f fresh f
(conr) H | C x1 . . . xn −→r H, z 7→1 C x1 . . . xn | z fresh z

(appr) H | f z −→r H | dup ys; drop f ; e[x := z]
with (f 7→n λysx, e) ∈ H

(matchr) H | match x {pi → ei} −→r H | dup ys; drop x; e[xs := ys]
with pi = C xs and (x 7→n C ys) ∈ H

(bindr) H | val x = y; e −→r H | e[x := y]

(dupr) H, x 7→n v | dup x; e −→r H, x 7→n+1 v | e
(dropr) H, x 7→n+1 v | drop x; e −→r H, x 7→n v | e if n ≥ 1
(dlamr) H, x 7→1 λysz, e | drop x; e −→r H | drop ys; e
(dconr) H, x 7→1 C ys | drop x; e −→r H | drop ys; e

Figure 5.5: The heap semantics for λ1

lambda will be called immediately and can not live longer than the other references in the
program, we can use the ∆ environment for e2 and the Γ2 multi-set for the ∆-environment
of e1.

Similarly, the match rule also benefits from the extra syntax. We define bv(pi) to be
the variables bound by (occurring in) pi. Then the rule is exactly like you would infer it
from matchs representation in pure lambda calculus – except that we can once again
pass the ∆-environment into the branches. We could even remove the assumption that x
must be in the Γ-environment, which Koka does in practice. Finally, the con rule simply
transforms every expression applied to the constructor2.

Any expression e′ that can be derived by the λ1 calculus (∅ | ∅ ` e e′) and
evaluates to a value using the strict semantics 5.2 can also be evaluated using the heap
semantics 5.5. It models the behaviour that a Koka program shows when evaluated
on a real heap. Any used memory location is modelled by a variable: the Heap is
then a function from variables to a pair of a reference count and a value. When the
heap is applied to an expression, we first evaluate some subexpressions according to the
evaluation context E. The expression is then in a normalized form and we only give rules
for these forms.

2[Rei+21] write the expressions applied to the constructor as values, but this is inconsistent with
the behavior of Perceus which may insert dup calls there (which are not values according to their
classification).

47

If the heap encounters a value in the (lamr) or (conr), it stores this value at a new
memory location (given by a fresh variable). When it encounters a variable, the evaluation
inside the innermost frame of the current evaluation context ends and we either process
the second-innermost evaluation context or, if none exists, end the evaluation. When we
encounter a function application, we increase the reference counts of the free variables
and drop the function: This corresponds directly to the lam rule, as we put the free
variables into the Γ environment there. Similarly, we need to dup the bound variables in
a match statement as we added them to the Γ statement in the match rule and drop
the scrutinee as we deleted it from Γ. We can handle a binding (in bindr) by writing the
memory location of the bound variable into the places where we use the new name.

Dups and drops are implemented by increasing or decreasing the reference counts.
When a value with a reference count of one is dropped, we delete the value from the heap
and drop its children.

5.4 Perceus

While λ1 already restricts the places where reference count instructions can be placed, it
still leaves considerable freedom. The Perceus algorithm presents one way of choosing
when exactly to dup and drop variables. For this it maintains four invariants that already
characterize the algorithm in full. For any derivation ∆ | Γ ` e e′:

• Both Γ and ∆ are sets, that is each variable occurs only once in them

• ∆ ∩ Γ = ∅

• Γ ⊆ fv(e), the set of free variables of e

Together these invariants guarantee that a variable is dropped as soon as possible
because otherwise for this variable x we have x ∈ Γ but x /∈ fv(e). Furthermore they
specify that any variable x will also be dupped as late as possible because else either Γ
would not be a set or x ∈ Γ ∩∆. As any algorithm that implements λ1, Perceus also
maintains that fv(e) ⊆ (Γ ∪∆). The full calculus can be found in Figure 5.6.

Just like the evaluation 5.2 algorithm, the Perceus algorithm is syntax-directed : It can
be implemented by pattern-matching on the syntactic constructs. While the evaluation
algorithm might change the syntactic representation and is thus not linear time, the
Perceus algorithm merely inserts instructions it will not consider again and is thus linear
time. One has to be careful with the handling of free variables though: Finding the
free variables of a term takes linear time and an implementation can easily become
quadratic if they are recomputed every time they are needed for a rule. In Koka’s Perceus
implementation the free variables are computed together with the insertion of reference
count instructions in a single pass – with the exception of function definitions where an
extra pass is necessary to find all free variables of the function. Caching the free variables
of every function then achieves a linear time algorithm.

48

svar
∆ | x `s x x

svar-dup
∆, x | ∅ `s x dup x; x

∆,Γ2 | Γ− Γ2 `s e1 e′1 ∆ | Γ2 `s e2 e′2 Γ2 = Γ ∩ fv(e2)
sapp

∆ | Γ `s e1 e2 e′1 e
′
2

x ∈ fv(e) Γ ⊆ ys = fv(λx, e) ∆1 = ys− Γ ∅ | ys, x `s e e′
slam

∆,∆1 | Γ `s λx, e dup ∆1; λysx, e′

x /∈ fv(e) Γ ⊆ ys = fv(λx, e) ∆1 = ys− Γ ∅ | ys, x `s e e′
slam-d

∆,∆1 | Γ `s λx, e dup ∆1; λysx, (drop x; e′)

x ∈ fv(e2) x /∈ ∆,Γ

Γ2 = Γ ∩ (fv(e2)− {x})
∆ | Γ2, x `s e2 e′2

∆,Γ2 | Γ− Γ2 `s e1 e′1
sval

∆ | Γ `s val x = e1; e2 val x = e′1; e′2

x /∈ fv(e2),∆,Γ

Γ2 = Γ ∩ fv(e2)

∆ | Γ2, x `s e2 e′2
∆,Γ2 | Γ− Γ2 `s e1 e′1

sval-d
∆ | Γ `s val x = e1; e2 val x = e′1; drop x; e′2

∆ | Γi `s ei e′i Γi = (Γ,bv(pi)) ∩ fv(ei) Γ′i = (Γ,bv(pi))− fv(ei)
smatch

∆ | Γ, x ` match x {pi → ei} match x {pi → drop Γ′i; e
′
i}

∆,Γi+1, . . . ,Γn | Γi `s ei e′i Γi = (Γ− ∪nj=i+1Γj) ∩ fv(ei) 1 ≤ i ≤ n
scon

∆ | Γ ` C e1 . . . en C e′1 . . . e
′
n

Figure 5.6: The Perceus algorithm

5.5 Properties

The first property that should interest us with an algorithm like Perceus is soundness : It
should not change the semantics of our program. For this we will in a first step relate any
λ1 derivation and its heap semantics to the basic evaluation given in 5.2. We write [H]e
for the expression where every free variable in e is recursively replaced by its value in H.

Theorem 5.1 (Theorem 1 in [Rei+21]). If ∅ | ∅ ` e e′ and e v,
then ∅ | e′ −→r H | x and [H]x = v.

This result says that at the end of the program we can read the correct result from
the Heap. Then the fact that Perceus is sound follows from the fact that it is an
implementation of the λ1 calculus:

Theorem 5.2 (Theorem 3 in [Rei+21]). If ∆ | Γ `s e e′ then also ∆ | Γ ` e e′.

The other properties that we are interested in concern the values that remain in the
heap. First we can show that any λ1 derivation will leave no garbage when finished. For

49

this we want to ensure that any value that is still live at the end of the program, can be
accessed by the result value:

Definition 5.1.

A variable x is reachable at an evaluation step H | e if either

• x ∈ fv(e)

• there is some y reachable at H | e such that y 7→n v ∈ H and x is reachable at
H | v.

Then we can write the claim that λ1 leaves no garbage as:

Theorem 5.3. If ∅ | ∅ ` e e′ and ∅ | e′ −→r H | x then any y ∈ dom(H) is reachable
at H | x.

A generalization of 5.3 might be:

Theorem 5.4 (Theorem 2 in [Rei+21]). If ∅ | ∅ ` e e′ and ∅ | e′ −→r H | x then for
every intermediate state Hi | ei, all y ∈ dom(Hi) are reachable at Hi | ei.

But while this theorem reveals more about the inner workings of the heap, it is not
stronger than 5.3: Since values can only leave the heap through a drop operation, they
need to be reachable to be cleaned up in a later state. However it becomes interesting
when we restrict reachability to exclude the free variables used only in dup and drop
operations: Then variables need to be freed as soon as they become unused. We write
dee for an expression e with its dup and drop operations removed.

Theorem 5.5 (Theorem 4 in [Rei+21]). If ∅ | ∅ `s e e′ and ∅ | e′ −→r H | x then for
every intermediate state Hi | ei such that ei 6= E[drop z; e′i] and ei 6= E[dup z; e′i], all
y ∈ dom(Hi) are reachable at Hi | deie.

In other words, Perceus may keep unused values around but only as long as the heap
is processing dup and drop statements. For example, when a variable x becomes unused
but we want to continue to use its child y (e.g. after a match on x), the heap will process
dup y; drop x; and will be garbage-free afterwards.

50

Chapter 6

Borrowing

In this chapter we will describe the technicalities of borrowing. In particular, we describe
how to extend the λ1 calculus to support borrowing and under which conditions it is safe
(or not safe) to borrow.

The intuitive description of section 3.7 can be axiomatized in the λ1 calculus 5.4
roughly as follows: We allow the argument to certain lambdas to be a variable that is in
the ∆ environment. Then in the lam rule we do not add x to the Γ environment, but
instead to the ∆ environment. This already achieves the effect we hoped for: instead of
passing a reference to the function we instead assert that a reference exists and allow it
to access it without handing over control. There are three problems with this approach
though:

• The argument to a borrowing lambda may not be a variable but instead a value.
Then we need to bind this value to a variable first. We handle this by giving a
normalization algorithm.

• In Koka functions take several arguments, but in the λ1 calculus they take only one.
Replacing a multi-argument function λx y by λx, λy, places x in the free variables
of the λy. But free variables need to be in the Γ environment, as we show later.
Thus we need to add multi-variable lambdas to our calculus.

• If a borrowing function is passed as a higher-order parameter, we have to make
sure that the information about borrowing is preserved. While this could be done
at runtime, it complicates our algorithms too much so we instead provide a simple
method for wrapping a borrowing function into a non-borrowing one.

6.1 Normalization

We design our normalization algorithm in the style of A-normalization 5.2. For this we
use two evaluation contexts: One, called T , to traverse the syntax tree and another, called
M, to move expressions out of applications to a binding site. We give their definition in
Figure 6.1.

51

∆, x | Γ ` e e′
app

∆ | Γ, x ` e x e′ x
con

∆ | x1 . . . xn ` C x1 . . . xn C x1 . . . xn

∆ | Γ,bv(pi) ` ei e′i
match

∆ | Γ, x ` match x {pi → ei} match x {pi → e′i}

Figure 6.2: Simplified rules of the λ1 calculus

T := � | T x | val x = T ; e

| match e {pi → T }
| val x = e; T

M := � | eM
| matchM {pi → ei}
| C x1 . . .M . . . en

M[e] −→ e′
norm

T [M[e]] −→ T [e′]

Figure 6.1: The evaluation contexts of
borrowing normalization

The rationale behind this approach is that
we want to move expressions out of certain syn-
tactical constructs (like applications or the scru-
tinee of a match) but not too far out: We do
not want to move them past other val bindings
they may depend on. A-normalization solves this
by transforming the entire program, but we are
content with changing only some constructs. We
therefore use the T context to move our attention
to a specific place in the syntax tree and then
use the M context to move everything except
variables out of these constructs.

For the M-reductions given below we will
assume that all variable names in the program
are unique, x denotes a fresh (unused) variable, M 6= �, and M 6=M′[val z = �; e].

M[x] −→ x

M[val y = e1; e2] −→ val y = e1; M[e2]

M[v] −→ val x = v; M[x]

where v is not a variable

M[match y {pi → ei}] −→ val x = match y {pi → ei}; M[x]

M[e1 e2] −→ val x = e1 e2; M[x]

In practice, Koka does not perform a complete normalization and instead only
normalizes the scrutinees of match statements and arguments that will be borrowed.
This does not change performance or correctness, but helps to keep the C-output readable.
Still, our normalization algorithm here is more general and allows us to derive a shorter
version of the λ1 calculus (see figure 6.2).

6.2 Multi-variable lambdas

52

x | Γ ` e e′ Γ = free variables of λb x, e
blam

∆ | Γ ` λb x, e λΓ
b x, e

′

Figure 6.3: An unsuitable borrowing rule

e := λx1 . . . xn, e

| e e1 . . . en | . . .

Figure 6.4: Syntax exten-
sion of 5.1 for borrowing

Assume for a moment we introduced a new syntax (λbx, e) for
borrowed parameters x together with the rule in 6.3. The rule
looks innocuous enough and it is not wrong – it just doesn’t
work as we might expect it to. Consider how reference count
instructions would be inserted into: λb x, λy, e. Assuming
that x ∈ fv(e), also x ∈ fv(λy, e) and so x must be in the
Γ environment for the inner lambda. Thus we arrive at:
λb x, dup x; λy, e. It is not possible to remove the x from
the Γ environment of the inner lambda safely because we can not guarantee that the
lambda is fully applied and thus x might be used by e after its last remaining reference.
Instead we are forced to introduce new syntax 6.4 to get a better calculus – similar to
how we had to introduce a match statement to use the ∆ environment in the branches.

In our further analysis we will assume that every application of a lambda will use
exactly the right number of arguments. For many typed languages (like Koka) this is
already the case. For others, like Haskell, that make generous use of partial application a
normalization algorithm needs to include η-expansion.

We can now state a preliminary version of borrowing that copies every function with
n arguments 2n-times; with every possible combination of arguments borrowed. This lets
us avoid the problems of wrapping (which we deal with in the next section) for a moment.
We transform every lambda into a set of lambdas indexed by a borrowing vector b and
choose a borrowing vector during application which we then use to index into the set.
For a sequence of variables x1 . . . xn and b ∈ {0, 1}n we write bx for the set of variables
xi where bi = 1. Similarly we write (1− b)x for the set of those variables xi where bi = 0.
The app rule is thus a special case of bapp in 6.5 where b ≡ 0 and every function has

∆, x | Γ ` e e′ bx ∈ ∆ b ∈ {0, 1}n
bapp

∆ | Γ, (1− b)x ` e x1 . . . xn e′b x1 . . . xn

Γ, bx | (1− b)x ` e eb ∀b ∈ {0, 1}n Γ = fv(λx, e)
blam

∆ | Γ ` λx1 . . . xn, e {λΓ x1 . . . xn, eb}b∈{0,1}n

∆,bv(pi) | Γ ` ei e′i x ∈ ∆
bmatch

∆ | Γ ` match x {pi → ei} match x {pi → e′i}

Figure 6.5: Copying functions for borrowing

53

x 6= fb var
∆ | x ` x x

∆, x1, . . . xn | Γ ` e e′ e 6= fb app
∆ | Γ, x1 . . . xn ` e x1 . . . xn e′ x1 . . . xn

∆ | Γ, x ` e e′ x ∈ ∆,Γ
dup

∆ | Γ ` e dup x; e′
∆ | Γ ` e e′

drop
∆ | Γ, x ` e drop x; e′

x /∈ ∆,Γ1,Γ2 ∆,Γ2 | Γ1 ` e1 e′1 ∆ | Γ2, x ` e2 e′2
val

∆ | Γ1,Γ2 ` val x = e1; e2 val x = e′1; e′2

∅ | Γ, x1 . . . xn ` e e′ Γ = free variables of λx, e
lam

∆ | Γ ` λx1 . . . xn, e λΓ x1 . . . xn, e
′

∆ | Γ,bv(pi) ` ei e′i x ∈ ∆,Γ; x 6= fb
match

∆ | Γ ` match x {pi → ei} match x {pi → dup bv(pi); e′i}

∆,Γi+1, . . . ,Γn | Γi ` xi e′i 1 ≤ i ≤ n
con

∆ | Γ1, . . . ,Γn ` C x1 . . . xn C e′1 . . . e
′
n

wrapping
∆ | fb ` fb λx, val z = fb x; drop bx; z

bx ∈ ∆ b ∈ {0, 1}n
bapp

∆ | fb, (1− b)x ` fb x1 . . . xn fb x1 . . . xn

bx | fv(λx, e1), (1− b)x ` e1 e′1
∆ | (Γ \ fv(λx, e1)), fb ` e2 e′2 b ∈ {0, 1}n, f /∈ ∆,Γ

blam
∆ | Γ ` val f = λx1 . . . xn, e1; e2 val f = λΓ x1 . . . xn, e

′
1; e′2

∆,bv(pi) | Γ ` ei e′i x ∈ ∆, x 6= fb
bmatch

∆ | Γ ` match x {pi → ei} match x {pi → e′i}

Figure 6.6: Borrowing resource calculus λ1b

only one argument. The blam rule is also a generalization of the lam rule in the same
spirit, but we also move the free variables Γ into the borrowed environment. This will
help us later to reason about the heap semantics. Furthermore, we generalize the match
rule to allow us to also match on borrowed values.

While this calculus is quite general, it relies on new primitives (sets) in our syntax
and copying function code for several different borrowing configurations will only be
useful in very narrow circumstances. Next we consider how we can use just a single
borrowing configuration.

54

6.3 Wrapping

The bapp rule of Figure 6.5 can invoke any expression with any amount of borrowing.
This is useful, since it allows us to pass arguments with ownership if we have it and as
borrowed else. But in practice, we want to define functions only for one combination
of borrowed and owned parameters. However, then we can not invoke any expression
with any amount of borrowing. Instead, an expression needs to carry the borrowing
configuration that it can be applied to.

For simplicity, we allow only variables to carry this information. In the bapp rule
of Figure 6.6 we then have to use the borrowing configuration b that f carries (fb).
In the blam rule, we define and immediately bind a lambda expression. A borrowing
configuration b can be chosen that marks some variables as borrowed and then f an be
used in the expression e2 with that configuration fb.

We have to pay attention that variables do not lose their configuration when they are
passed to other functions. Functions that appear as a parameter are assumed to accept
all their arguments as owned. When we pass a function fb to a higher-order function
we thus have to wrap it into a function that takes all its arguments as owned. For this
it simply calls fb and drops all borrowed arguments of fb later (in the wrapping rule).
We assume that functions in the free variables are stored in a way that allows them to
be called with their borrowing configuration intact.

Otherwise the calculus is largely unchanged. We only modified the match rule to dup
the bound variables directly, so we do not have to drop x. This creates a nice parallel to
the bmatch rule that also does not have to drop its arguments and allows us to use the
same heap semantics for both: One can simply remove the dups and drops from matchr.

Remark 6.1. While it is a sensible default to mark functions passed as higher-order
parameters as owned-only, it may be interesting to allow other defaults. For example, we
could allow constructors to contain borrowing functions or pass them as higher-order
parameters. But extending our calculus with this functionality seems unwise: we have to
track the borrowing vectors as a form of type that adds clutter to the rules. Instead it
would be better to check this during a type inference stage and insert cast tokens so
that the borrowing vectors of argument and parameter match. The λ1b calculus can then
transform them back to pure lambda calculus using the cast rule in 6.7.

Γ1 = b′x \ bx Γ2 = (1− b′)x \ (1− b)x
casting

∆ | fb ` castb′(fb) λb′x, dup Γ1; val z = fb x; drop Γ2; z

Figure 6.7: Casting rule

55

6.4 When to borrow?

In the last section we have not discussed how the borrowing vector b should be chosen
for a given function. In our implementation, we have decided to allow the programmer
to choose this vector and we would like to give some heuristics in this section.

Ullrich and de Moura [Ud19] point out that borrowing should not inhibit reuse
optimization or tail call optimization, since these are more powerful optimizations that
can improve program performance more than borrowing can. Reuse optimization is
inhibited when we borrow a parameter that could have been reused else (or of which a
child could have been reused else). Tail call optimization can be inhibited if we create
new values and pass them to a recursive call in a borrowed position. Ullrich and de
Moura give the following example:

fun f(x)
match x

A(r) -> r
_ ->

val y1 = B;
val y2 = A(y1)
f(y2)

Here, f(ys2) should be a tail-call, but if we borrow x then it is not, because y2 has
to be dropped afterwards.

But even when no other optimizations get less effective as a result, borrowing can
be quite tricky to apply well. For most function calls the cost of incrementing and
decrementing the reference counts of its arguments will be negligible compared to the
cost of running the function. In the cases where the function is so small that the cost
of reference counting would be significant, the function can usually be inlined by the
compiler. However, internal functions (implemented in C) and recursive functions can
not be inlined and can profit from borrowing.

The nqueens benchmark (Figure 6.8) computes the number of possible placements
of queens on a chessboard such that all queens are safe from attacks from other queens.
For this we compute inductively a list of possible solutions for an n× n chessboard and
then enumerate all solutions for an (n+ 1)× (n+ 1) chessboard that arise by adding a
single queen to an existing solution. In such a solution, a queen has a fixed column and
can be represented by its row number. It is safe from other queens in the solution, if it is
not in the same row and not on the same diagonal:

fun safe(queen : int, diag : int, xs : solution) : bool
match xs

Cons(q,qs) -> (queen != q && queen != (q+diag)
&& queen != (q - diag) && safe(queen,diag+1,qs))

_ -> True

56

nqueens
0s

1s

2s

3s

0
.5
7
s
1
.1
0
s

1
.0
7
s

1
.1
4
s

1
.3
8
s

1
.4
4
s

1
.2
3
s

··
·5

.8
8
s

2
.4
7
s

1
.0
9
s

1
.3
1
s

el
ap

se
d
ti
m
e

(l
ow

er
is
b
et
te
r)

Koka, borrow safe Koka Koka, no borrow

Koka, int, borrow safe Koka, int Koka, int, no borrow

OCaml Haskell Swift

Java C++

nqueens
0x

1x

2x

3x

(9
5
m
b
)

1
.0
0
x

1
.0
0
x

1
.0
0
x

1
.0
0
x

1
.0
0
x

1
.8
6
x

··
·3

.6
0
x

2
.4
4
x
··
·3

.4
5
x

1
.5
4
x

re
la
ti
ve

rs
s
(l
ow

er
is
b
et
te
r)

Figure 6.8: Benchmark results for
nqueens, Apple M1

We compare Kokas performance on this bench-
mark against other implementations. For this we
consider 6 variants. The ‘Koka, int’ variants use
arbitrary-precision integers that are reference coun-
ted, while the ‘Koka’ variants use 32-bit integers
that are passed by value. The ‘no borrow’ variants
do not use any borrowing, while the plain variants
use borrowing only for internal functions. Finally
the ‘borrow safe’ variants borrow the parameter
xs of the safe function. Borrowing xs is a good
choice here as it does not inhibit any other optim-
izations and other function in the benchmark (not
shown here) never pass their last reference of xs
to safe.

As expected there is little difference between
borrowing internal functions or not for 32-bit in-
tegers that do not profit from it. Borrowing xs
has a positive effect for both variants, but the ef-
fect is much bigger for the 32-bit variant: The
arbitrary-precision variant still has to handle dup
and drop operations on queen and diag while
the 32-bit variant has to handle no other reference
count instructions. We believe that this allows the
C compiler to compile the code into a tight loop
that makes better use of registers.

6.5 Lean’s borrow inference

Ullrich and de Moura [Ud19] describe a borrow inference for Lean. We present an
adaption for Koka in Figure 6.9 where we write e � S to mean that the variables in

var
x� ∅ cons

C x1 . . . xn � ∅
cons-reuse

C@r x1 . . . xn � ∅
bapp

fb x� (1− b)x
app

f y � {f, y} lam
λx, e� fv(λx, e)

e� S drop-reuse
val r = drop-reuse(x); e� S ∪ {x}

e1 � S1 e2 � S2
val

val x = e1; e2 � S1 ∪ S2

ei � Si ∃i, pi ∩ Si 6= ∅
match

match x {pi → ei} �
⋃

i Si ∪ {x}
ei � Si ∀i, pi ∩ Si = ∅

bmatch
match x {pi → ei} �

⋃
i Si

Figure 6.9: Lean’s Borrow Inference

57

S should be marked as owned based on the evidence gathered in e. In particular, they
mark parameters as owned if they are again passed as owned to a function or reused to
make sure that no reuse opportunities are obstructed based on borrow inference. They do
not describe the lam and val rules explicitly as their internal calculus is A-normalized,
but we believe that these rules are accurate representations of Lean’s behaviour on the
A-normalizations of these constructs.

However, this inference made some programs slower, both in their benchmarks as
well as our experience. We believe that a significant part of this slowdown can be found
in the fact that Lean’s borrow inference can hold on to memory for much longer than
necessary. This is especially problematic if a program allocates memory at the same time,
since the peak memory consumption can grow significantly in this case.

In section 3.7 we already gave an example where borrowing makes performance worse.
If we borrow the parameter xs of make-tree we will free the list xs too late:

fun make-tree(xs)
match(xs)

Cons(x,xx) -> Bin(x, Tip, make-tree(xx))
Nil -> Tip

This has two bad effects: First, the peak memory usage is twice as high as it needs to
be. Second, performance will be worse because we need to request lots of new memory
from the OS and we need to free xs in a separate pass. Since fetching memory is
much slower than executing instructions on a modern CPU, it is much better to free
the Cons nodes as we traverse the list in make-tree than to consider the entire list
twice. Unfortunately, the borrow inference in Figure 6.9 would mark xs as borrowed. In
the next chapter, we will discuss a criterion for deciding whether a variable should be
borrowed based on the worst-case increase in memory usage.

58

Chapter 7

Frame-limited transformations

While with Perceus a program will use the least amount of heap space possible, we need
to use slightly more to enable useful performance optimizations. For example, a pair of
a dup and a drop on the same variable can be eliminated if they occur directly after
another. But is it wise to move dups and drops to be able to eliminate some of them? A
common pattern in Perceus’s output is the following:

match x
X(y, z) ->

dup(y); drop(x);
val a = ...
drop(y);
...

We could easily eliminate the dup and drop on y if we moved the drop on x behind the
definition of a: y only needs to be borrowed here and we know that x holds on to it, so
we can move the dup on y behind the definition of a as well and eliminate it with the
drop. But then we will drop x, and by extension z, late and we might use an arbitrary
amount of heap space more if a and z are big.

The central insight of this chapter is that we can model both reuse analysis and
borrowing as a question of moving dups and drops around. This can itself be modelled
using just a simple addition to the simplified λ1 calculus (Figure 7.1): In the normalized
calculus, we can move a drop behind a val-binding by moving its variable from the Γ1

environment to the Γ2 environment. Whether this move is a good idea can then be
decided using the (?) condition. In this chapter we first discuss how reuse and borrowing
can be modelled in the simplified λ1 calculus and then discuss possible (?) conditions.

7.1 Modelling reuse analysis and borrowing

Even though borrowing was quite difficult to describe, we can model it easily if we only
want to consider its impact on heap usage. Assume we have a borrowing function call
fb x. We will model this in our calculus as a function that takes all its arguments as

59

var
∆ | x ` x x

∆, x | Γ ` e e′
app

∆ | Γ, x ` e x e′ x

∆ | Γ, x ` e e′ x ∈ ∆,Γ
dup

∆ | Γ ` e dup x; e′
∆ | Γ ` e e′

drop
∆ | Γ, x ` e drop x; e′

∆ | Γ, r ` e e′
drop-reuse

∆ | Γ, x ` e drop-reuse x; e′

con
∆ | x1 . . . xn ` C x1 . . . xn C x1 . . . xn

∅ | Γ, x ` e e′ Γ = free variables of λx, e
lam

∆ | Γ ` λx, e λΓx, e′

∆ | Γ,bv(pi) ` ei e′i x ∈ ∆,Γ
match

∆ | Γ ` match x {pi → ei} match x {pi → dup bv(pi); e′i}

x /∈ ∆,Γ1,Γ2 ∆,Γ2 | Γ1 ` e1 e′1 ∆ | Γ2, x ` e2 e′2 (?)
val

∆ | Γ1,Γ2 ` val x = e1; e2 val x = e′1; e′2

Figure 7.1: Simplified λ1 calculus

owned, but where we need to insert a dup for every variable in bx. Then we have at least
one copy of these variables in the Γ set after the function call and, if this was the last use
of the variable, have to drop it. But the simplified λ1 calculus does not allow us to place
a drop directly behind a function call: We can only place it behind the function call if we
use a val-binding. As such, we can decide whether a function should borrow by checking if
all its application sites can be derived using the λ1 calculus with an appropriate (?)-rule.

We model reuse analysis by defining drop-reuse and @r as:

val r = drop-reuse x; drop x; val r = C⊥1 . . .⊥n; drop r;

C@r drop r; C

In other words: Instead of reusing a constructor, we allocate a new one of the same
size with no children and drop it immediately. We can then decide using the (?)-rule if it
is feasible to push the drop down to the constructor where the reuse would be applied.
This scheme yields the same heap structure as reuse analysis and so we can transfer facts
about the one to the other.

7.2 Garbage-free star-rule

If we set (?) = Γ2 ⊆ fv(e2), we obtain a calculus that is very similar to the Perceus
algorithm. Unlike the Perceus algorithm, the simplified λ1 calculus does not prescribe

60

where a drop should be placed precisely and that makes it possible that memory is held
on longer than necessary. For example, we can derive:

val x = list(1, 100) // unused binding
match y

A -> drop(x); ...
B -> drop(x); ...

Here, x is freed only after the match and not before (as Perceus would). But this
momentary increase in the memory usage compared to Perceus seems rather insignificant,
since no allocations can happen while we hold on to x. This can be seen in the rules of
the calculus: Allocations can happen in the con, lam and app rules but none of these
rules allows you to place a drop directly behind them. Rather, the only way to place a
drop behind them is through the val rule, where the drop can happen at the start of e′2.
A step in the evaluation where an allocation happens, can be written as E[v] (as then
the lamr or conr rule is executed next). With this it can be formally proved that:

Theorem 7.1 (Garbage-free). If ∅ | ∅ ` e e′, (?) = Γ2 ⊆ fv(e2) and ∅ | e′ −→r H | x
then for every intermediate state Hi | E[v] all y ∈ dom(Hi) are reachable at Hi | dE[v]e.

A proof of this claim can be found in [LL21]. While this is slightly weaker than the
notion of garbage-freeness we introduced in chapter 5, this still guarantees that the heap
can not grow while dead memory remains in it. Consequently, the peak heap usage can
not increase.

7.3 Frame-limited star-rule

Reuse analysis holds on to a single cell in memory in order to reuse it later. This means
that the memory it holds on to will be small; in particular there is a constant c1 such
that sizeof(r) ≤ c1 for any reuse token r. As there is only a constant amount of reuse
opportunities per function, we can allow reuse in λ1 by setting (?) as Γ2 = Γ′,Γ′′, Γ′ ⊆
fv(e2), sizeof(Γ′′) ≤ c. The resulting evaluation is not garbage-free, but the total size of
the heap is still bounded: Any time we allow Γ′′ to remain live, we add a new val-frame
to our evaluation context.

Theorem 7.2 (Frame-limited). If ∅ | ∅ ` e e′, (?) as above and ∅ | e′ −→r H | x
then for every intermediate state Hi | E[v], there is a partition H1

i ,H
2
i of Hi such that all

y ∈ dom(H1
i) are reachable at Hi | dE[v]e and |H2

i | ≤ c · |E|.

Again, a proof of this claim can be found in [LL21]. We might hope to be able to
bound this extra increase by a constant factor, but that is usually not possible: For all we
know e1 in the val-rule might contain a recursive call or a call to an anonymous function
that we can only know at runtime (and that may contain a similar optimization). To be
able to bound the increase by a constant factor, we would need to ensure that at any
given moment only a constant amount of function calls on the stack use an optimization
like this.

61

go
0s

0.1s

0.2s

0.3s

0.4s

0.5s

0
.2
2
s

0
.2
4
s

el
ap

se
d
ti
m
e

(l
ow

er
is
b
et
te
r)

Koka Koka, no reuse

go
0x

0.5x

1x

1.5x

(6
8
9
m
b
)

0
.7
2
x

re
la
ti
ve

rs
s
(l
ow

er
is
b
et
te
r)

Figure 7.2: Bench-
mark results for ‘go’,
Apple M1

In fact, reuse analysis can use more than a constant amount
of extra memory. The following program uses iter-times more
heap space with reuse than without:

fun big-list()
list(1, 10000000)

fun go(n, t)
match(t)

Cons(_, xx) ->
val y = go(n, xx)
Cons(1, y)

Nil | n >= 1 ->
go(n - 1, big-list())
Nil

Nil -> Nil

fun main()
val iter = 10
go(iter, big-list())

Without reuse analysis go will discard the list t as it traverses
it and will have freed the list once it creates a new one in the
second branch (Koka does not perform TRMC in the first branch
since the call to go in the second branch is not in tail position).
With reuse analysis every Cons constructor is kept live in the first branch and so the list
is still in memory when we allocate a new one. However, this analysis omits that we will
use even more stack space. The benchmark in Figure 7.2 illustrates this: The rss (which
also includes stack size) is significantly larger for Koka with reuse than without. But the
increase is much smaller than one might expect and the program is still faster with reuse
analysis.

Remark 7.1. We have used the evaluation context to model the stack above. This is an
accurate model only if no tail-call modulo cons optimization takes place: TRMC replaces
a function call with a jump which leads to fewer stack frames. It also moves an allocation
from after the recursive call to before. As such it can itself increase the heap space by
a constant factor every time a jump happens. It would be possible to study TRMC in
the framework of this chapter as well by relaxing the notion of ‘frame’ to also include
TRMC-jumps.

7.4 Peak frame-limited star-rule

We can combine the ideas of the two previous rules to obtain a rule that works well for
borrowing. We first saw the argument that it is fine to hold on to an arbitrary amount

62

of memory a few moments longer as long as we do not allocate. We then saw that we
could allow a constant amount of dead memory (per stack-frame) while allocating an
arbitrary amount. Dually, we can also allow an arbitrary amount of dead memory while
allocating only a constant amount. This is important for borrowing since many functions
only traverse a datastructure and then allocate a bit at the end. For example, we can
traverse a list and return the first element that fulfils a predicate:

fun lookup(xs : list<a>, pred : a -> bool) : maybe<a>
match xs

Cons(x,xx) -> if pred(x) then Just(x) else lookup(xx,pred)
Nil -> Nothing

This function allocates only a single constructor and so we can borrow xs without
worrying about an increase in memory consumption. Again, we can describe this using a
(?) rule. For this we assume that there is a predicate cost(x, e) that gives the maximum
allocation size in e after x would have been dropped. We write cost(Γ′′, e) for the maximum
of the costs of x ∈ Γ′′. We then set (?) as Γ2 = Γ′,Γ′′, Γ′ ⊆ fv(e2), cost(Γ′′, e1) ≤ c. The
resulting evaluation is not frame-limited, but the peak size of the heap is still bounded:
While there might be a large amount of dead memory at any allocation, this memory
must have been allocated before and we can only add a constant amount (per stack-frame)
to it.

Theorem 7.3 (Peak frame-limited (conjectured)). If ∅ | ∅ ` e e′, (?) as above and
∅ | e′ −→r H | x then for every intermediate state Hi | E[v], we have |Hi| ≤ |Hmax|+c · |E|.

But we can even allow more: We can combine this rule with the frame-limited
star-rule to allow dead memory to be either small or of little cost. Then we set (?) as:
Γ2 = Γ′,Γ′′,Γ′′′, Γ′ ⊆ fv(e2), sizeof(Γ′′) ≤ c, cost(Γ′′′, e1) ≤ c. We conjecture that this
rule is again peak frame-limited.

Unfortunately, we can not describe the predicates sizeof and cost in our calculus: The
untyped lambda calculus introduced in chapter 5 allows unbounded recursion in too many
places and it is thus difficult to bound the amount of allocations happening in a single
function. We will therefore describe our rules for borrow inference only informally in a
calculus that is closer to Koka: Simply typed lambda calculus with mutually recursive
functions.

The sizeof predicate can be computed using the algebraic notation introduced in
section 4.2. We use t1, t2 to refer to parts of a type and define inductively:

sizeof(1) = 1

sizeof(a) =∞
sizeof(t1 + t2) = max{sizeof(t1), sizeof(t2)}
sizeof(t1 · t2) = sizeof(t1) + sizeof(t2)

sizeof(µx.t1) =∞

63

In other words, any type that is parameterized over an unknown type a or refers to a
recursive type must be assumed to have infinite size. Only types that are composed of
other small types like booleans or ints can be assumed to be small themselves.

To define the cost predicate, we call for a given expression e a tuple m that contains
exactly one branch of every match-statement in e a branch selection of e. We define
e[m] to be the expression that arises from e if we replace each match statement with
the branch chosen in m. A path through e is a member of the equivalence class (w.r.t.
e[m]) of branch selections. We can define cost(x, e) as the most expensive cost of a path
through e. The cost of a path e[m] is zero if x is not dropped on that path and else e[m]
contains a subexpression drop x; e′ and we define the cost as the size of the constructors
in e′ plus cost(f) for every function call f in e′.

For a recursion-less function its cost is the cumulative size of the allocated constructors
and the cost of the functions it calls on its most expensive path. For a self-recursive
function its cost is infinite if there is a path that contains a recursive call and allocates
or calls functions with cost not zero. Else, its cost is its most expensive path in the sense
of recursion-less functions. For a mutually recursive function its cost is infinite if there is
a path that contains a call to its partner and allocates (directly or through a function
call). Else, its cost is determined as if it was self-recursive.

7.5 Conclusion

In this chapter we have seen how we can make a borrow inference that does not increase
the peak memory usage of a program too much and thus can not lead to space leaks. We
can pair this with the rule that borrowing should not inhibit tail calls or reuse analysis
(see section 6.4). But is that enough? We have found that borrowing can still make
some programs slower, even in cases were no extra memory is held on to. For example
the lookup function from the last section becomes slower through borrowing, even if it
does not hold the last reference to xs. However, we believe that this is related to more
low-level optimizations like prefetching, that can be addressed separately from borrow
inference. We expect that further research will be able to give a borrow inference that
can make programs faster with little theoretic or practical downside.

64

Bibliography

[Arm21] Arm Ltd. ARMv8-A Memory systems: The memory model. 2021. url:
https://developer.arm.com/documentation/100941/0100/
The-memory-model?lang=en.

[Carp21] The Carp Community. Carp Documentation: Memory management - a
closer look. 2021. url: https://github.com/carp- lang/Carp/
blob/master/docs/Memory.md.

[Col60] George E Collins. ‘A method for overlapping and erasure of lists’. In: Com-
munications of the ACM 3.12 (1960), pp. 655–657.

[Con21] Contributors. Binary Trees - The Computer Language Benchmarks Game.
2021. url: https://benchmarksgame-team.pages.debian.net/
benchmarksgame/performance/binarytrees.html.

[Cor+09] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2009.

[cpp21] cppreference. std::memory order. 2021. url: https://en.cppreference.
com/w/cpp/atomic/memory_order.

[CST18] Jiho Choi, Thomas Shull and Josep Torrellas. ‘Biased reference counting:
Minimizing atomic operations in garbage collection’. In: Proceedings of the
27th International Conference on Parallel Architectures and Compilation
Techniques. 2018, pp. 1–12.

[DB76] L Peter Deutsch and Daniel G Bobrow. ‘An efficient, incremental, automatic
garbage collector’. In: Communications of the ACM 19.9 (1976), pp. 522–526.

[Fla+93] Cormac Flanagan et al. ‘The essence of compiling with continuations’. In:
Proceedings of the ACM SIGPLAN 1993 conference on Programming language
design and implementation. 1993, pp. 237–247.

[FW75] D Friedman and S Wise. ‘Unwinding stylized recursions into iterations’.
In: Comput. Sci. Dep., Indiana University, Bloomington, IN, Tech. Rep 19
(1975).

[Gal16] Matt Gallagher. ‘Reference Counted Releases in Swift’. Blog post. Dec.
2016. url: https://www.cocoawithlove.com/blog/resources-
releases-reentrancy.html.

65

https://developer.arm.com/documentation/100941/0100/The-memory-model?lang=en
https://developer.arm.com/documentation/100941/0100/The-memory-model?lang=en
https://github.com/carp-lang/Carp/blob/master/docs/Memory.md
https://github.com/carp-lang/Carp/blob/master/docs/Memory.md
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/binarytrees.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/binarytrees.html
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://www.cocoawithlove.com/blog/resources-releases-reentrancy.html
https://www.cocoawithlove.com/blog/resources-releases-reentrancy.html

[GS78] Leo J Guibas and Robert Sedgewick. ‘A dichromatic framework for balanced
trees’. In: 19th Annual Symposium on Foundations of Computer Science (sfcs
1978). IEEE. 1978, pp. 8–21.

[HB05] Matthew Hertz and Emery D Berger. ‘Quantifying the performance of garbage
collection vs. explicit memory management’. In: Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. 2005, pp. 313–326.

[Hue97] Gérard Huet. ‘The zipper’. In: Journal of functional programming 7.5 (1997),
pp. 549–554.

[HW67] Bruce K Haddon and William M Waite. ‘A compaction procedure for variable-
length storage elements’. In: The Computer Journal 10.2 (1967), pp. 162–
165.

[Int15] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A: 8.2 Memory Ordering. 2015. url: https://software.
intel.com/content/www/us/en/develop/download/intel-64-
and-ia-32-architectures-sdm-volume-3a-system-programming-
guide-part-1.html.

[JM02] Simon Peyton Jones and Simon Marlow. ‘Secrets of the glasgow haskell
compiler inliner’. In: Journal of Functional Programming 12.4-5 (2002),
pp. 393–434.

[LBM19] Daan Leijen, Zorn Ben and Leo de Moura. ‘Mimalloc: Free List Sharding
in Action’. In: Programming Languages and Systems. LNCS 11893 (2019).
APLAS’19. doi: 10.1007/978-3-030-34175-6_13.

[LH83] Henry Lieberman and Carl Hewitt. ‘A real-time garbage collector based
on the lifetimes of objects’. In: Communications of the ACM 26.6 (1983),
pp. 419–429.

[LL21] Anton Lorenzen and Daan Leijen. ‘Reference Counting with Frame Limited
Reuse’. In: MSR-TR-2021-30 (2021).

[Mau+17] Luke Maurer et al. ‘Compiling without continuations’. In: Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 2017, pp. 482–494.

[McB01] Conor McBride. The Derivative of a Regular Type is its Type of One-Hole
Contexts. (Extended Abstract). 2001. url: http://strictlypositive.
org/diff.pdf.

[McC60] John McCarthy. ‘Recursive functions of symbolic expressions and their
computation by machine, part I’. In: Communications of the ACM 3.4
(1960), pp. 184–195.

66

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-volume-3a-system-programming-guide-part-1.html
https://doi.org/10.1007/978-3-030-34175-6_13
http://strictlypositive.org/diff.pdf
http://strictlypositive.org/diff.pdf

[Mok17] Andrey Mokhov. ‘Algebraic Graphs with Class (Functional Pearl)’. In: Pro-
ceedings of the 10th ACM SIGPLAN International Symposium on Haskell.
Haskell 2017. Oxford, UK: Association for Computing Machinery, 2017,
pp. 2–13. isbn: 9781450351829. doi: 10.1145/3122955.3122956.

[Moo84] David A Moon. ‘Garbage collection in a large Lisp system’. In: Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming. 1984,
pp. 235–246.

[Oka99] Chris Okasaki. Purely functional data structures. Cambridge University Press,
1999.

[PP03] Gordon Plotkin and John Power. ‘Algebraic operations and generic effects’.
In: Applied categorical structures 11.1 (2003), pp. 69–94.

[PP09] Gordon Plotkin and Matija Pretnar. ‘Handlers of algebraic effects’. In:
European Symposium on Programming. Springer. 2009, pp. 80–94.

[Rei+21] Alex Reinking et al. ‘Perceus: Garbage Free Reference Counting with Reuse’.
In: Proceedings of the 42rd ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’21. Pittsburgh, USA: ACM,
2021.

[SBB21] Andrey Semashev, Tim Blechmann and Helge Bahmann. Boost document-
ation: Reference counting. 2021. url: https://www.boost.org/doc/
libs/1_77_0/doc/html/atomic/usage_examples.html#boost_
atomic.usage_examples.example_reference_counters.

[SF98] Jonathan Sobel and Daniel P Friedman. ‘Recycling continuations’. In: Pro-
ceedings of the third ACM SIGPLAN international conference on Functional
programming. 1998, pp. 251–260.

[SHM20] Daniel Selsam, Simon Hudon and Leonardo de Moura. ‘Sealing Pointer-
Based Optimizations behind Pure Functions’. In: Proc. ACM Program. Lang.
4.ICFP (Aug. 2020). doi: 10.1145/3408997. url: https://doi.org/
10.1145/3408997.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. ‘Self-adjusting binary
search trees’. In: Journal of the ACM (JACM) 32.3 (1985), pp. 652–686.

[SW67] H. Schorr and W. M. Waite. ‘An Efficient Machine-Independent Procedure
for Garbage Collection in Various List Structures’. In: Commun. ACM 10.8
(Aug. 1967), pp. 501–506. issn: 0001-0782. doi: 10.1145/363534.363554.
url: https://doi.org/10.1145/363534.363554.

[Ud19] Sebastian Ullrich and Leonardo de Moura. ‘Counting Immutable Beans –
Reference counting optimized for purely functional programming’. In: Proceed-
ings of the 31st symposium on Implementation and Application of Functional
Languages (IFL’19). Singapore, Sept. 2019.

67

https://doi.org/10.1145/3122955.3122956
https://www.boost.org/doc/libs/1_77_0/doc/html/atomic/usage_examples.html#boost_atomic.usage_examples.example_reference_counters
https://www.boost.org/doc/libs/1_77_0/doc/html/atomic/usage_examples.html#boost_atomic.usage_examples.example_reference_counters
https://www.boost.org/doc/libs/1_77_0/doc/html/atomic/usage_examples.html#boost_atomic.usage_examples.example_reference_counters
https://doi.org/10.1145/3408997
https://doi.org/10.1145/3408997
https://doi.org/10.1145/3408997
https://doi.org/10.1145/363534.363554
https://doi.org/10.1145/363534.363554

[Ung84] David Ungar. ‘Generation scavenging: A non-disruptive high performance
storage reclamation algorithm’. In: ACM Sigplan notices 19.5 (1984), pp. 157–
167.

[Wad90] Philip Wadler. ‘Linear types can change the world!’ In: Programming concepts
and methods. Vol. 3. 4. University of Glasgow. 1990, p. 5.

[XL21] Ningning Xie and Daan Leijen. ‘Generalized evidence passing for effect
handlers: efficient compilation of effect handlers to C’. In: Proceedings of the
ACM on Programming Languages 5.ICFP (2021), pp. 1–30.

68

	Introduction
	Notation
	Overview
	Contributions
	Acknowledgements

	Memory management
	Manual memory management & RAII
	Tracing garbage collectors
	Reference counting
	A note on memory ordering

	A Short Tour of Koka
	Algebraic data types
	Functions on ADTs
	Higher-order functions
	Static reference count instructions
	Reuse analysis
	Drop specialization
	Borrowing

	Link-inverted datastructures
	Binary trees
	Link inversion and the Zipper
	Avoiding cycles with Zippers
	Splay trees
	Red-black trees
	B-trees and constructor padding
	Conclusion

	Calculi for program transformations
	Computation
	A-normalization
	Static reference count instructions
	Perceus
	Properties

	Borrowing
	Normalization
	Multi-variable lambdas
	Wrapping
	When to borrow?
	Lean's borrow inference

	Frame-limited transformations
	Modelling reuse analysis and borrowing
	Garbage-free star-rule
	Frame-limited star-rule
	Peak frame-limited star-rule
	Conclusion

